Publications

Published

  1. Lazar, M; Weston, J: Greedy Algorithm for Parameter Dependent Operator Lyapunov Equations, Systems Control Letters, 154, 2021, 104968
  2. Lazar, M; Molinari, C: Optimal distributed control of the heat-type equations by spectral decomposition, Optimal Control, Applications & Methods, 42 (4) 891-926, 2021.
  3. Palunko, I; Tolić, D; Prkačin, V; Learning Near-Optimal Broadcasting Intervals in Decentralized Multi-Agent Systems using Online Least-Square Policy Iteration, IET Control Theory & Applications, 15 (8),  1054-1067, 2021, accompanying video
  4. Beattie, C., Gugercin, S., Tomljanović, Z., Sampling-free model reduction of systems with low-rank parameterization, Advances in Computational Mathematics, 46 (6) 1-34 (2020)
  5. Nakić, I.; Täufer, M.; Tautenhahn, M.; Veselić, I.; Unique continuation and lifting of spectral band edges of Schrödinger operators on unbounded domains,  Journal of spectral theory 10 (3) 843-885 (2020)
  6. Prkačin, V; Palunko, I; Petrović, I; “State and parameter estimation of suspended load using quadrotor onboard sensors,” 2020 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 2020, pp. 958-967.
  7. Egidi,M.; Nakić, I.; Seelmann, A.; Täufer, M.; Tautenhahn, M.; Veselić, I.; Null-controllability and control cost estimates for the heat equation on unbounded and large bounded domains,  in “Control Theory of Infinite-Dimensional Systems”, series “Linear Operators and Linear Systems”
  8. Nakić, I.; Täufer, M.; Tautenhahn, M.; Veselić, I.; Sharp estimates and homogenization of the control cost of the heat equation on large domains, ESAIM:COCV 26 (54) 2020
  9. Lazar, M; Lohéac, J: Output controllability in a long time horizon, Automatica, 113 (2020) 108762
  10. Ivec, I; Lazar, M: Propagation principle for parabolic H-measures, 19 pp,  Journal of Pseudo-Differential Operators and Applications, 11 (2020), 467–489
  11. Jokić, A.; Nakić, I.; On Structured Lyapunov Functions and Dissipativity in Interconnected LTI Systems, IEEE Transactions on Automatic Control 65 (3) (2020) 970-985.
  12. Tolić, D.; Stabilizing Transmission Intervals and Delays in Nonlinear Networked Control Systems through Hybrid-System-with-Memory Modeling and Lyapunov-Krasovskii Arguments, Nonlinear Analysis: Hybrid Systems, Vol.36, May 2020, pp.16
  13. Nakić, I; Veselić, K.; Perturbation of eigenvalues of the Klein-Gordon operators, Revista Matemática Complutense, (33) 557–581 (2020)
  14. Hernandez-Santamaria, V; Lazar, M; Zuazua, E: Greedy optimal control for elliptic problems and its application to turnpike problems, Numerische Mathematik 141(2) (2019) 455–493.
  15. Nakić, I., Tomljanović, Z., Truhar, N., Mixed control of vibrational systems, Journal of Applied Mathematics and Mechanics 99/9 pp. 1-15, 2019
  16. Truhar, N.; Tomljanović, Z.; Puvača, M.; Approximation of damped quadratic eigenvalue problem by dimension reduction, Applied mathematics and computation 347 pp. 40-53, 2019
  17. Tolić, D.; Stabilizing Transmissions and Delays in Nonlinear Networked Control Systems: Hybrid Systems with Memory and Lyapunov Approach, IEEE Conference on Decision and Control, Miami Beach, FL, USA, pp. 2842-2847, December 2018.
  18. Buşoniu, L.; de Bruin, T.; Tolić, D.; Kober, J.; Palunko, I.; Reinforcement Learning for Control: Performance, Stability, and Deep Approximators, Annual Reviews in Control, Vol.46, pp. 8-28, 2018
  19. Tomljanović, Z; Beattie, C.;  Gugercin, S.; Damping optimization of parameter dependent mechanical systems by rational interpolation, Advances in Computational Mathematics, 44/6 pp. 1797-1820, 2018
  20. Tolić, D.; Palunko, I.; Learning Suboptimal Broadcasting Intervals in Multi-Agent Systems, IFAC Papers Online, Vol.50, No.1, pp. 41444149, 2017

To appear

  1. Lazar, M; Lohéac, J: Control of parameter dependent systems, in Numerical Control and beyond (E. Trélat, E. Zuazua eds.), Handbook of Numerical Analysis, Vol. 22, 33 pp

Submitted

  1. Puvača, M.; Truhar, N.; Tomljanović, Z.; Efficient Approximation of Novel Residual Bounds for Parameter Dependent Quadratic Eigenvalue Problem, 24 pp