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Summary

o Hyperbolic quadratic eigenvalue problem
o Frequency isolation algorithms

o Basic isolation algorithm

o Continuation algorithm

o Numerical examples

Motivated by: J.Moro and J.Egana, Directional algorithms for the frequency
isolation problem in undamped vibrational systems, Mechanical Systems and
Signal Processing, 2016.
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Hyperbolic quadratic eigenvalue problem (HQEP)
(MM +AD+K)z=0,
where M, D, K € C™*™ are Hermitian matrices, M > 0 and
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Hyperbolic quadratic eigenvalue problem

Hyperbolic quadratic eigenvalue problem (HQEP)
(MM +AD+K)z=0,
where M, D, K € C™*™ are Hermitian matrices, M > 0 and
(' Dz)? > 4 (2" Mz) (2" Kz), V0#xeC".

Nice properties of the hyperbolic QEPs:
o 2n real and semisimple eigenvalues

o eigenvalues can be obtained by bisection

Problem

When the eigenvalues of the QEP are in certain region, vibration system
experiences dangerous vibrations (resonance) and M, D and K should be
chosen in such way that this spectral regions are avoided.
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Problem

QUESTION! How to avoid resonance?
The idea is to slightly modify some of the coefficient matrices M, D or K that

this spectral regions are avoided!
More precise - we fix a certain tolerance p and define a so-called resonance band

R:(C—p,c+p)

where c is the dangerous frequency or any other quantity that should be kept
away from the spectrum.

Spectrum is isolated!

Ai—3 Xi—2 >\i—1/ i Aitk1 Ait2  Aig3
\

c—p c+p
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Problem

QUESTION! How to avoid resonance?

The idea is to slightly modify some of the coefficient matrices M, D or K that
this spectral regions are avoided!

More precise - we fix a certain tolerance p and define a so-called resonance band

R=(c—p,c+p)

where c is the dangerous frequency or any other quantity that should be kept
away from the spectrum.

Frequency isolation problem

Given resonance band R = (¢ — p, ¢ + p) and vibrational system (M, D, K)
with some eigenvalue in (¢ — p, ¢ + p), modify system in such way that the new
system (M + AM,D + AD, K + AK)
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Problem

QUESTION! How to avoid resonance?

The idea is to slightly modify some of the coefficient matrices M, D or K that
this spectral regions are avoided!

More precise - we fix a certain tolerance p and define a so-called resonance band

R=(c—p,c+p)

where c is the dangerous frequency or any other quantity that should be kept
away from the spectrum.

Frequency isolation problem

Given resonance band R = (¢ — p, ¢ + p) and vibrational system (M, D, K)
with some eigenvalue in (¢ — p, ¢ + p), modify system in such way that the new
system (M + AM,D + AD, K + AK)

o has no eigenvalue in the resonance band and

o is close (in some sense) to original system (M, D, K)
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Preservation of hyperbolicity

Theorem (F.Tisseur, N.J.Higham, P. Van Doren '02)

A system N> M + \D + K with M Hermitian positive definite and D and K
Hermitian is hyperbolic if the following inequality holds:

Omin(D)? > Anax (M) Amax (K) .
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Preservation of hyperbolicity

Theorem (F.Tisseur, N.J.Higham, P. Van Doren '02)

A system N> M + \D + K with M Hermitian positive definite and D and K
Hermitian is hyperbolic if the following inequality holds:

Omin(D)? > Anax (M) Amax (K) .

Corollary

Let \2M + AD + K be hyperbolic and A D a Hermitian perturbation of the
damping matrix, D, such that

| AD ||2< Omin(D) — 27/ Amax (M) Amax (K) .

Then the perturbed system A2M + A(D + AD) + K is hyperbolic.
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The basic isolation algorithm

Consider: hyperbolic QEP, M, D and K are tridiagonal and simple eigenvalues
- modified (perturbed) system:

Q(s) = \>M + \Ds + K
D, is an n x n matrix depending on the parameters sz, k = 1,...,2n — 1,if
s = sgthen Dy = D.
Idea of the algorithm:
Identify a direction in (M, D, K') space along which:
o variation of "inside" eigenvalues is maximal, and
o variation of "outside" eigenvalues is minimal.

Then, modify (M, D, K') along this direction up to isolation.

)\; is considered as the function of data s = (s1, 82, . . ., S2,—1) € R*"*71

Work in parametar space R2" 1 instead in matrix space R™*™|
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Denote by I;,, and /,,,; the subsets of {1, ..., 2n}, set of indices of the
eigenvalues inside and outside of the resonance band.
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Denote by I;,, and /,,,; the subsets of {1, ..., 2n}, set of indices of the
eigenvalues inside and outside of the resonance band.
Taylor expansions, for each s close to sg, gives

Aj(s) = Aj(s0) + (VAj(s0),0s) + - -+, where ds = s — 59
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Denote by I;,, and /,,,; the subsets of {1, ..., 2n}, set of indices of the
eigenvalues inside and outside of the resonance band.
Taylor expansions, for each s close to sg, gives
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First order term (V\;(sp), ds) should be:
1. as large as possible for \;, j € 1;,
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ds L VAj(so) forall j € /.,
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The basic isolation algorithm

Denote by I;,, and /,,,; the subsets of {1, ..., 2n}, set of indices of the
eigenvalues inside and outside of the resonance band.
Taylor expansions, for each s close to sg, gives

Aj(s) = Aj(s0) + (VAj(s0),0s) + - -+, where ds = s — 59

First order term (V\;(sp), ds) should be:
1. as large as possible for \;, j € 1;,

2. as small as possible for \j, j € /.,

Since
ds L VAj(so) forall j € /.,

denote

Wt = {w e R™ ™ : (VX(s0),w) = 0,5 € L}
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The basic isolation algorithm

Denote by I;,, and /,,,; the subsets of {1, ..., 2n}, set of indices of the
eigenvalues inside and outside of the resonance band.
Taylor expansions, for each s close to sg, gives

Aj(s) = Aj(s0) + (VAj(s0),ds) + - -+, where ds = s — 59

First order term (V\;(so), ds) should be:
1. as large as possible for \;, j € I;,
2. as small as possible for )\j, 7€ low

Two stages of the isolation process:
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The basic isolation algorithm

Denote by I;,, and /,,,; the subsets of {1, ..., 2n}, set of indices of the
eigenvalues inside and outside of the resonance band.
Taylor expansions, for each s close to sg, gives

Aj(s) = Aj(s0) + (VAj(s0),0s) + - -+, where ds = s — 59

First order term (V\;(so), ds) should be:
1. as large as possible for \;, j € I;,
2. as small as possible for )\j, 7€ lou

Two stages of the isolation process:

1. Choice of direction: Determine unit vector wy,qz € W+ such that

<V)‘J (30)7 58>7j € Iz'n

are maximal, in some sence.
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The basic isolation algorithm

Denote by I;,, and /,,,; the subsets of {1, ..., 2n}, set of indices of the
eigenvalues inside and outside of the resonance band.
Taylor expansions, for each s close to sg, gives

Aj(s) = Aj(s0) + (VAj(s0),0s) + - -+, where ds = s — 59

First order term (V\;(so), ds) should be:
1. as large as possible for \;, j € I;,
2. as small as possible for \;, j € /..

Two stages of the isolation process:

1. Choice of direction: Determine unit vector wy,qz € W+ such that

<V>‘j($0)7 58>7j € Iz'n

are maximal, in some sence.

2. Isolation: Given w,;,,, from Stage 1., find smallest o* € R such that
eigenvalues correspond to s = Sy + ™ Wynq, are outside the R.
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The basic isolation algorithm - choice of direction

Suzana Miodragovi¢ Frequency isolation problem for hyperbolic QEP 8/16



The basic isolation algorithm - choice of direction

Stage 1.
Find optimal direction wyqe € W . J
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Stage 1. J

Find optimal direction wyqe € W .

Compute:
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Find optimal direction wyqe € W .

Compute:

o Directional derivatives of all eigenvalues — requires all eigenvectors of
initial QEP. Sometimes we don’t have to do it for all eigenvalues!
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The basic isolation algorithm - choice of direction

Stage 1.
Find optimal direction wyqe € W . J

Compute:

o Directional derivatives of all eigenvalues — requires all eigenvectors of
initial QEP. Sometimes we don’t have to do it for all eigenvalues!

EXPLAIN later!
o Orthonormal basis of W (e.g. via QR factorization)

O Wmag IS Singular vector that correspond to o, of scalar product matrix,
that is II € R9%? with

7'[']‘775 = <v>\j(80)7wt>7

in the position (7,t), j,t =1,...,q.
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The basic isolation algorithm - choice of direction

Stage 1.
Find optimal direction wyqe € W . J

Compute:

o Directional derivatives of all eigenvalues — requires all eigenvectors of
initial QEP. Sometimes we don’t have to do it for all eigenvalues!

EXPLAIN later!
o Orthonormal basis of W (e.g. via QR factorization)

O Wmag IS Singular vector that correspond to o, of scalar product matrix,
that is II € R9%? with

7'[']‘775 = <v>\j(80)7wt>7

in the position (7,t), j,t =1,...,q.
OVERALL COST: O(n?)
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The basic isolation algorithm - isolation

Stage 2.

Given optimal direction w4 € W find smallest o € R such that for
s = 8o + & wyma, eigenvalue is outside the resonance band.
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The basic isolation algorithm - isolation

Stage 2.

Given optimal direction w4 € W find smallest o € R such that for
s = 8o + & wyma, eigenvalue is outside the resonance band.

QEP is hyperbolic—>use bisection on « to find how many eigenvalues for
S0 + VWmaz

are inside the resonance band K.
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are inside the resonance band R. As soon as the number of eigenvalues in R is
zero - STOP.
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s = 8o + & wyma, eigenvalue is outside the resonance band.

QEP is hyperbolic—>use bisection on « to find how many eigenvalues for
S0 + VWmaz

are inside the resonance band R. As soon as the number of eigenvalues in R is
zero - STOP.

OVERALL COST: O(n) per bisection step

Quadratic eigenvalue problem have to stay hyperbolic!
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The basic isolation algorithm - isolation

Stage 2.

Given optimal direction w4, € WL, find smallest o* € R such that for
s = 8o + o wmas eigenvalue is outside the resonance band.

QEP is hyperbolic—use bisection on « to find how many eigenvalues for
S0 + QWmaz

are inside the resonance band R. As soon as the number of eigenvalues in R is
zero - STOP.

OVERALL COST: O(n) per bisection step

Quadratic eigenvalue problem have to stay hyperbolic!
That is «v is between the quantities:

77 = VAmax(M)Amax (K) = omin(D)  and 77 = omin(D) = v/ Amax (M) Amax (K) .
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The basic isolation algorithm - isolation

Stage 2.

Given optimal direction w4 € W find smallest o € R such that for
s = 8o + & wyma, eigenvalue is outside the resonance band.

QEP is hyperbolic—>use bisection on « to find how many eigenvalues for
S0 + VWmaz

are inside the resonance band R. As soon as the number of eigenvalues in R is
zero - STOP.

OVERALL COST: O(n) per bisection step

Quadratic eigenvalue problem have to stay hyperbolic!
Algorithm works only if there are no eigenvalues in ‘R either forc« = 7~ or
a = 7 — provides starting interval for bisection.

Suzana Miodragovi¢ Frequency isolation problem for hyperbolic QEP

9/16



1, - options

Suzana Miodragovi¢ Frequency isolation problem

hyperbolic QEP



1, - options

How we choose set /,,,,;?
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How we choose set /,,,;?
2. First, we compute

B max {|Ai(s0) —c+ p|, [ Xi(so —c —p)|}
Tin = X IV Asso '
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M, D, K are tridiagonal matrices with diagonal and codiagonal elements uniformly
distributed in [0.5, 1] and [0, 0.1], [-8,—7] and [0, 0.5], [1.6, 2.1] and [0, 0.1],
respectively.
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distributed in [0.5, 1] and [0, 0.1], [-8,—7] and [0, 0.5], [1.6,2.1] and [0, 0.1],
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Numerical example

M, D, K are tridiagonal matrices with diagonal and codiagonal elements uniformly
distributed in [0.5, 1] and [0, 0.1], [-8, —=7] and [0, 0.5], [1.6, 2.1] and [0, 0.1],
respectively.

Forn = 50 : 50 : 500 measure time needed for isolation of one eigenvalue by basic

algorithm and relative error in parameters ie. %
s |loo

n Tout Igut Igut Time Timeq Times Error

50 6 6 1 0.79 0.36 0.31 5.8582e — 04
100 14 14 13 1.98 0.84 0.55 1.8381e — 03
150 8 8 8 2.91 1.47 1.00 3.8210e — 03
200 17 17 14 5.64 2.50 1.96 5.0559e — 03
250 7 7 4 9.37 3.78 2.88 6.3999e — 04
300 5 5 5 13.51 4.96 4.37 9.7486e — 04
350 6 6 6 20.14 8.46 6.97 2.2452e — 03
400 7 7 7 31.72 16.54 11.25 4.4521e — 04
450 6 6 6 45.94 15.81 14.12 1.0724e — 03
500 | 17 17 17 | 58.93 | 26.64 19.56 | 8.5720e — 04

Table: Set I,,,; before and after selection of "dangerous" eigenvalues for intervals
(0,18),(¢c—p—3,c+p+3)and (c—p—0.3,c+ p+0.3).
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Continuation algorithm

Basic isolation algoritham is likely to give good solutions only if Taylor

approximation sufficiently accurate, i.e., if (M, D + AD, K) sufficiently close to
(M, D, K).
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Greedy version: Try to isolate in each step, then advance as far as possible in the
optimal direction and repeat. J
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Basic isolation algoritham is likely to give good solutions only if Taylor
approximation sufficiently accurate, i.e., if (M, D + AD, K) sufficiently close to
(M, D, K). Instead of trying to isolate in one single run, repeat basic isolation
procedure over and over, setting s) = MathToArr(D) and updating

siv1 =i + hawll

max?
with some appropriate, small step size /;, where wf??ax is the optimal direction at
step <.
There are several choices for h;. So far:

Greedy version: Try to isolate in each step, then advance as far as possible in the
optimal direction and repeat. J

At step ¢ compute T, i+, 7, and optimal direction wffl)am

o If possible, compute o isolating the spectrum, take h; = o and stop.
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Continuation algorithm

Basic isolation algoritham is likely to give good solutions only if Taylor
approximation sufficiently accurate, i.e., if (M, D + AD, K) sufficiently close to
(M, D, K). Instead of trying to isolate in one single run, repeat basic isolation
procedure over and over, setting s) = MathToArr(D) and updating

siv1 =i + hawll

max?
with some appropriate, small step size /;, where wf??ax is the optimal direction at
step <.
There are several choices for h;. So far:

Greedy version: Try to isolate in each step, then advance as far as possible in the
optimal direction and repeat. J

At step ¢ compute T, i+, 7, and optimal direction wffl)am
o If possible, compute o isolating the spectrum, take h; = o and stop.

o If not, take h; take h; = 7';r or h; = 7; and continue.
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Example-continuation algorithm

M, D, K tridiagonal s.t. QEP hyperbolic, n = 50
Isolation of eigenvalues Asg(so) = 10.0952, Ago(so) = 10.2558, Ag1(sp) = 10.3211,
A2 (s0) = 10.3778 from the resonance band (¢ — p, ¢ + p) = (10, 10.4).

14

10

—— —ctp
[SIRCN]
2r ¥ Xs)

0 20 40 60 80 100

New eigenvalues: Agg (s) = 9.9016, Agg(s) = 10.0000, g1 (s) = 10.4863, Ag2(s) = 10.4905
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where M and K are tridiagonal Hermitian matrices, D is tridiagonal
skew-Hermitian.
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purely imaginary and semi-simple. Then the QEP

Q(\) :== —G(—i\) = N2M 4+ A\(iD) - K

is Hermitian and hyperbolic.
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Numerical example - Gyroscopic QEP

Gyroscopic QEP:
G\ =NM+AD+K)zr=0 XcC 0#£zcC"

where M and K are tridiagonal Hermitian matrices, D is tridiagonal
skew-Hermitian.

M, K and D are chosen such that the system is stable — all eigenvalues are
purely imaginary and semi-simple. Then the QEP

Q(\) :== —G(—i\) = N2M 4+ A\(iD) - K

is Hermitian and hyperbolic.

In this example: M and K are tridiagonal matrix with diagonal and codiagonal
elements uniformly distributed in [0.5, 1] and [0, 0.1], [-0.5, 0] and [0, 0.1],
respectively.

The diagonal and codiagonal elements of the matrix D are uniformly distributed
in [—57, —41] and [01, 0.57], respectively.
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* are einegvalues with indices in set /,,,,; for different tolerance 7ol
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Conclusions

We have:
Algorithm for the frequency isolation problem proposed for hyperbolic QEPs.
Tested only for tridiagonal case, with simple eigenvalues.
v/ Basic isolation algoritham: cost O(n3), works for systems close to
non-resonance
v/ Continuation algoritham: cost O(n3) per step, works irrespective of
spectral distribution or distnace to non-resonance.

Thank you for attention!
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