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Cooperative and Decentralized Systems
Multi-agent systems
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https://www.youtube.com/watch?v=W_IxYnAQWCY
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Problem

T
Agent Dynamics

@ consider N heterogeneous linear agents given by

&= A&+ By + wj,
G = G, M

where ¢ € R is the state, u; € R™ is the input, ¢; € R is
the output of the it agent, i€ {1,2,..., N}, and w; € R
reflects exogenous disturbances and/or modeling
uncertainties
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Problem

T
Agent Dynamics

@ consider N heterogeneous linear agents given by
& = A& + B + wy,
G =G, M

where ¢ € R is the state, u; € R™ is the input, ¢; € R is
the output of the it agent, i€ {1,2,..., N}, and w; € R
reflects exogenous disturbances and/or modeling
uncertainties

@ a common decenftralized policy is

u(t) = =K > (G(1) = G(1), @

JEN;

where K; is an ny, x ne gain matrix
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Problem

T
Closed-Loop Dynamics

@ define ¢ := (f],...,f/\j), ¢ = (C],...,CN) and w = (w1,...,wN)
@ utilizing the Laplacian matrix L of the communication graph
G, we reach

E(1) = A%e(t) + ANE(t - d) + w(h),
(= CYg,
with
A = diag(A,..., Ay), A =[AM]
Al = —|;BK C;, CY = diag(Cy, ..., Cn),
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Optimal Intermittent Feedback

T
Optimal Intermittent Feedback

° 7‘,’ € T.i e N - broadcasting instants of the jt agent
@ asynchronous communication
@ X:=(....,—¢,...),whereie{1,... N} andj e N,
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Optimal Intermittent Feedback

Optimal Intermittent Feedback

) f{ € T, i e N - broadcasting instants of the jth agent
@ asynchronous communication
@ X:=(....—¢,...),whereie{1,... ,N}andje N
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RL preliminaries

The goal of RL is to solve a stochastic discrete-time optimal J

control problem

Controller

Markov decision process (MDP) (X, A, f, p).
@ X C R"™ is the state space of the process,
@ A C R™ isthe action space,

0 f: X xAxX — [0,00) is the fransition probability function of
the process,

9 p: X x Ax X — Risthe reward function
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RL preliminaries

Reward function

Controller

@ A deterministic Markov Decision Process (MDP)

Xies1 = F(Xe, Q)
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RL preliminaries

Reward function

Controller

@ A deterministic Markov Decision Process (MDP)
Xies1 = F(Xe, Q)

@ Reward function p: X x U — R

N1 = p(Xie, Qi X 1)
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RL preliminaries

Reward function
reward, .

Controller

@ A deterministic Markov Decision Process (MDP)
Xies1 = F(Xe, Q)
@ Reward function p: X x U — R
N1 = p(Xie, Qi X 1)

@ The controller chooses actions according to its policy
h: X—=U

Ak = h(Xc)
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RL preliminaries

@ Theretun R

R(x0) = {Z’Y p(Xk, h(Xi), Xk+1)}

k=0

where v € (0, 1] is the discount factor
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RL preliminaries

T
Q-learning

@ Q-functions Q : X x A — R fix the inifial action.

@ Once Q* is available, an optimal (greedy) policy can be
computed easily by selecting at each state an action with
the smallest optimal * value:

h*(x) € arg mciln Q" (x, a).

@ The state value functions can be expressed in terms of
Q-functions

V(x) = @"(x, h(x)).
V*(x) = mci’n Q" (x,a) = Q" (x, h*(x)).
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RL preliminaries

T
Q-iteration
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RL preliminaries

T
Policy

@ The optimal policy (greedy policy in &*)

h(x) € arg max Q*(x, u)
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RL preliminaries

T
Policy

@ The optimal policy (greedy policy in &*)

h(x) € arg max Q*(x, u)

@ Policy evaluation

e atf every iteration / solving the Bellman equation for Q" of the
current policy h,
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LEARNING BROADCASTING INTERVALS IN DECENTRALIZED MAS USING LSPI
Policy

@ The optimal policy (greedy policy in &*)
@ Policy evaluation

h(x) € arg max Q*(x, u)

e atf every iteration / solving the Bellman equation for Q" of the
current policy h,
@ Policy improvement

hi1(x) € arg max Q"(x, u)
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RL preliminaries

T
Approximation of Q

@ In continuous spaces, policy evaluation cannot be solved
exactly
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RL preliminaries

VAL DECENTRALIZED MAS USING LSPI
T
Approximation of Q
@ In continuous spaces, policy evaluation cannot be solved
exactly

@ Linearly parametrized Q-function approximator @
e nbasis function (BFs) ¢y,

...,¢n:XX U—)R
o ndimensional parameter vector 0

é - Z d)l(xv U)e/ = ¢T(X7 u)0
=1
where ¢(x, u) = [¢1(X, U), ..., én(x, U)].
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VAL DECENTRALIZED MAS USING LSPI
T
Approximation of Q
@ In continuous spaces, policy evaluation cannot be solved
exactly

@ Linearly parametrized Q-function approximator @
e nbasis function (BFs) ¢y,

...,¢n:XX U—)R
o ndimensional parameter vector 0

é - Z d)l(xv U)e/ = ¢T(X7 u)0
=1

where ¢(x, u) = [¢1(X, U), ..., én(x, U)].
U=Tlu uy.

@ Control action u is scalar which is bounded to an inferval
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RL preliminaries

T
Approximation of Q

@ In continuous spaces, policy evaluation cannot be solved
exactly
@ Linearly parametrized Q-function approximator @
o nbasis function (BFs) ¢1,...,¢0n: X x U —=R
o ndimensional parameter vector 0

n
Q= Z d)l(xv U)e/ = ¢T(X7 u)0
=1
where ¢(x, u) = [¢1(X, U),..., én(x, u)]".
@ Control action u is scalar which is bounded to an inferval

U=Tlu uy.
@ Chebyshev polynomials of the first kind

Vi (U) = 2Uy
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RL preliminaries

T
Least Square Policy Iteration (LSPI)

@ define T(f,‘) =T — t;
@ decision 7(f;) € Ais given by

where

W Jura.eA every ¢ iterations,
P (x(1)) = { h (x(1)) otherwise,
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RL preliminaries

T
Least Square Policy Iteration (LSPI)

@ define T(f,‘) =T — t;
@ decision 7(f;) € Ais given by

where

W Jura.eA every ¢ iterations,
P (x(1)) = { h (x(1)) otherwise,

where “u.r.a." stands for “uniformly chosen random action"
and yields exploration every ¢ steps while h,.(x(f)) is the
policy obtained according to

hi(x(1)) € argmax Q(x(1), (1)) ©

CERI= =» «=» =
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RL preliminaries

T
Least Square Policy Iteration (LSPI)

@ «, isupdated every k > 1 steps from the projected Bellman
equation for model-free policy iteration

Ficw, = yNia + Zj,
where v is from (3) and
fo=p/l, Ng=0, 2z =0,
r—n1+¢v ﬂTW@M4Lﬂmﬂf,

= A1+ o(x(), 7(1)) b (X(h), h(x (1)) T
Zi=2z_1+ o(x( /)aT(Ti))r(ff)v

where I';, A\; and z; are updated at every iteration step i
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RL preliminaries

Least Square Policy Iteration (LSPI)

@ «, isupdated every k > 1 steps from the projected Bellman
equation for model-free policy iteration
Ficw, = yNia + Zj,

where v is from (3) and
fo=p/l, Ng=0, 2z =0,
[y =iy + o(x(h), (h) o (x(fin), 7(fn)
A= Ay + o (x(h), T(h)) e (x(h), h(x(t1)))
zi = zi_1 + ¢(x(h), 7(h)) r(t),

where I';, A\; and z; are updated at every iteration step i

@ new «, improves the Q-function

@ improved policies (in the sense of Problem) are obtained
from (6)

[m] = = =
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Convergence

NG INTERVALS IN DECENTRALIZED MAS USING LSPI
T
Bellman equations (4) and (6) can be written as
Q" =T,

Q' =T(Q).
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Convergence

B
Q-iteration

An arbitrary initial -function &, can be iterated to reach Q*:

Q1 = T(Q),
which is known as the Q-iteration.

Estimate of state-action value function in policy iteration

Q(x, @) = E{ p(x, a,x') + 7@"(x', he(x)) }.
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Convergence

Approximated policy iteration converts to
a1 = (PoToF) (),
where F(a) equals the right-hand side of
Q(x(1), 7(1)) = &7 (x(h). (1)) e,

while the projection P(Q) equals $Q when orthonormal bases
(e.g.. Chebyshev polynomials) are employed.
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Convergence

The expansiveness coefficient of Po T o Fin
a1 =(PoToF) (o),

is upper bounded by

E:= 2" T MINe.
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Convergence

|Q" — @™ <4,
holds
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T
Near-Optimality Bounds
The approximate policy evaluation is accurate to within § in the
L sense, that is, if

vk e{1,2,...},
then in the limit as k — oo the following near-optimality bound

lim sup || @™

276
Qe € ——5.
k— o0 H (] -

)2
Moreover, if the sequence of obtained policies converges to
some h, then the following fighter bound holds:

18 - @l < 20
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Validation

Agent Interconnections

Agerlt #3

S

‘ us, G 1
X3
o — [

Intermittent learning

Crazyflie

Output Low level control 3

synchonization
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Validation

T
Crazyflie model identification

@ Transfer function form
X()_ K s
o(s)  s(Trs+ 1)
where Kr = 0.944, T = 0.297 and Ty = 0.45
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Validation

T
Crazyflie model identification

@ Transfer function form
X()_ K s
o(s)  s(Trs+ 1)
where Kr = 0.944, T = 0.297 and Ty = 0.45
@ State-space form

&(H) = Ag() + Bu(f) +w

" m o(f) +w,

)

il =

where Ks = 3.17 and T; = 3.37
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Validation

T
Crazyflie model identification

@ Transfer function form
X()_ K s
o(s)  s(Trs+ 1)
where Kr = 0.944, T = 0.297 and Ty = 0.45
@ State-space form

(1) = AL(H) + Bu(t) +w
x(H] [0 1] [x(t) 0
[xm} - [o AN [KJ o) +w,
where Ks = 3.17 and T; = 3.37
@ Communication delayis d =0.45s

o = = = =
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Validation

Motor
valuas.

-

1 L

Telametry

Base Station PC
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Validation

MAS with Crazyflie - Experimental validation
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Validation

T
MAS with Crazyflie - Experimental validation
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Thank you for your attention!
Questions?!

‘«
- .. - Croatian SCience DATAC ROSS Centre of Research Excellence for Data Science and Cooperative Systems
Con Dy S Foundation . - Research unit for Advanced Cooperative systems (ACROSS)
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