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Controlability of dynamical systems |

Abstract parabolic problem

{/(t) = Ay(t) + (1), t>0,
¥(0) = u.

Here,

@ M is a Hilbert space and A is upper-bounded self-adjoint with an upper
bound

@ (5¢)e>0 is the semigroup generated by A, see (Engel and Nagel, 2000).
Problem (1) has the mild solution given by

t
y(t):Stu—l—/ S At—7)dr, t>0.
0
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Controlability of dynamical systems I

Controlability

We say that the system (1) is controllable to a target state y* € H in time T > 0
if there is u € H such that

-
STu:y*—/ SAT—7)dr.
0

Approximate controlability

We say that the system (1) is approximately controllable in time T > 0 if for all
y* € H and all € > 0 there exists u € H such that

.
HSTu—i-/ SAT—7)dr — y*|| <e. 2)
0

v
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Optimization problem

Quadratic cost function
for e, T > 0 and y* € H we introduce the problem

.
min{J(u): ||5Tu—|—/ SAT—7)dr — y*| gg}
ueH 0

where

2

1 T
Ko =5hul+ 3 [ 00 at.

St /OtSTf(t— 2)dr — w(t)

)

Here

@ a>0and 8 e L>®((0, T);[0,00)) are weights of the cost
e we L2((0, T); H) is the target trajectory
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Turning on the constraints |

Problem (3) can be restated as

Lrlréiﬂ{J(U)‘i‘/E <Sru+/OTSTf(T—T)dT>}, (4)

where B stands for the closure of the ball B. (y*) of radius ¢ and center y*, and /g
is the corresponding indicator function defined as

0 if y € B,
I_ p—
5() {+oo else.

Solvability

The function u — J(u) + Iz o (STu+ fOT S, f{T)dr) is proper, strongly convex and
lower-semicontinuous, problem (3) has a unique solution, which we denote by u°P*
(see, for instance, Peypouquet, 2015, Corollary 2.20).
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Turning on the constraints |l

Some further definitions

@ The solution to the corresponding unconstrained problem

u™™ = arg min J(u),

ueH
° by
. . T
ymt = St +/ S AT —7)dr
0

a
VP = SpuPt 4 / SAT—r)dr
0

we denote optimal states obtained from u™™ and u°P*, respectively.
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Our approach

Joint work with: I. Naki¢, M. Lazar and M. Tautenhan.

@ Our approach is an extension of the result from (Lazar, Molinari, and
Peypouquet, 2017)

o We add stability analysis based on resolvent calculus

@ Numerical resolvent calculus

RKFun

Further, we discuss the relationship between numerical rational function’s calculus
based on rational Krylov subspace representation (Berljafa and Gittel, 2017) and
the approximation problem for the generalized exponential functions which appear
as central for the study of the concrete numerical examples.
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The main result |

Theorem
Let T, >0, y* € H. Then the optimal initial state u°®" is given by
WP = (4 Sor + W) (" Sy + ), (5)
where
T T
v =ald +/ B(t)Sadt, ¥ = / B(t)Sew ™ (t)dt,
0 0

and ;¥ > 0 is the unique solution of ®(u1) = € for e < |W™1Srp — y*2™||, and zero
otherwise. Here ®: [0,00) — [0, 00) is the function defined by

®(p) = [ly™"™ — (uSor + W) 7 (uSary™" ™ + Sry)|. (6)

v
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The main result 1l

Piece-wise constant constraints

For 8 the indicator function of the interval [Ty, T3], we have

A _ oTiA

/OTﬂ(t)St dt= A"Y(Sy, — Sr,) = /67

= dE(N) .

Here E(-) is the spectral measure of the self-adjoint operator A.

| A

Perturbed exponential functions

Functions g which can be represented as
8(x) = uo(x) + u1(x)e™

where 1 and 1y # 0 are arbitrary rational functions and a < 0, are called
perturbed exponential functions
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Spectral calculus

Given a rational function r and a measurable function g we have
0

(v, g(A)V) = (v, f(A)V)=/ (8(2) = () d(E(A)v, v), (7)

— 00

where E(-) is the spectral measure (Reed and Simon, 1979; Kato, 1995).
Then

8(A) — {A)llzery < g — Ml (—00,0)-

Best rational approximation
There exists a unique real rational function r} such that
ry =argmin{||g— rllr~ : ris a type (n, n) rational function}

and further
lg— rllie < CH

where C > 0 is a constant independent of n and H = 9.29 is the Halphen
constant, (Cody, Meinardus, and Varga, 1969; Walsh, 1931)

v
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Constructing rational approximations |

For a continuous function f, and a contour I enclosing a point z € C we have

Quadratures turn Cauchy integrals into rational functions
Take

as a rational function surrogate.

@ Start from trapezoid rule on an interval

e For infinite intervals use Moebius transforms (rational functions!)

o Talbot quadratures, Carathéodory-Fejér, and such approaches, (Trefethen,

Weideman, and Schmelzer, 2006)
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Constructing rational approximations Il

Bromwich integral
Inverse Laplace transform of a partial rational function f(z) = 1/(z— a)

1
e = dz

7271'1 rz—a

and in the case in which ais an operator

eA

= (z—A)" L dz.
o re(z ) 1z
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Constructing rational approximations Il
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Constructing rational approximations IV
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Rational Arnoldi decomposition

RAD

For A € C"™" a relation of the form
AV K = VmHma

for V,,, € C"™™ of full column rank and K, Hm € CTDXM 31 unreduced
Hessenberg pencil, is called the rational Arnoldi decomposition.

Let Hpm = (h;) and Ky, = (ki)
@ The quotients hjy1 j/hiy1 ) are called the poles of the decomposition.

e Polynomials g1 = 1, gj(z) = [[;(his1,i — zkjs1,; define rational Krylov spaces
Vi =qi-1(A) (A Y) -

o We use V; to parametrize a family of rational functions.
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Galerkin approximations |

@ Let V}, be the space of piece-wise linear, for a given triangular tessellation of
2, and continuous functions on €.

@ The Galerkin projection Ay : Vi — Vy is given by the formula
Ah _ (A1/2Ph)*(A1/2Ph),

where Pj, is the orthogonal projection onto V.

@ The resolvent estimate for A using the Galerkin projection Aj, reads (see e.g.
(Gopalakrishnan, Grubisi¢, and Ovall, 2020) for technical details)

[(z—A) " tv— (2= Ap) Wz < CHY |V, (8)

for h < hyg and v € V.

Luka Grubigi¢ (UniZg) Rational surrogates June 14, 2021 17 /51



Galerkin approximations |l

See also (Lasiecka and Triggiani, 2000, Section 5).

We will, however need this estimate solely for at most d poles (j, i=1,---

the rational function rin the pole residue form, and so

For a rational function in partial fractions form
Let e.g.

N N
o 3ol 3"

" Si—Z
i=1

Then
A — (AnV]li2) < d Ch*|IV]|2

,dof

Finally, let g(x) = up(x) + u1(x)e® be the perturbed exponential function. For a

given rational function r and v € V}, we have the estimate

18(A)v = (AnI| < llg(A)v = {AWI| + [[{A)v = r(An)V]
< llg = les(-ooglllvil + dCH? |IV]] -

(9)
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Galerkin approximations |lI

We can now construct the operator rri(A) := rol + 27:1 ri(A — s;)71 such that

18(A) = rre(A)ll iy < tolllgll2(—co.0 -

RKToolbox

We use lumped mass approximation of a differential operator! J
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Rational functions galore

With this setting and under additional assumption that the operator A is strictly
negative, the operator W and the vector 1) from the main theorem can be
computed explicitly

V=al+ %A7152T/3(/— Sa1y3), b =AT'Sya(l— St3)w. (10)
We can now use spectral calculus to exemplary represent the operator W as
V= 04/+/ReA 2T/3 g(A\) dE(N)
=al+ /ReA 2T/3(1/A — e 2T/3 /0) dE(N)

The function g(\) = (1/\ — e* 27/3/)) is obviously the perturbed exponential
function for which the rational approximation theory holds (there exists a small
degree rational approximation).
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Diffusion in an homogeneous material in 1D |

Example 1

Take A = Oy The initial control u = y(0) (left), the computed solution at time

t = T/2 compared with the desired trajectory w(middle), and the optimal final
state at t = T compared with the target y* (right) for three different values of the
tolerance €.
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Diffusion in an homogeneous material in 1D I

t=0, €= 0.29(0)

25

3.5
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Diffusion in an homogeneous material in 1D IlI

t=T/2, e=0.20(0)

081
061
04r

02r

vV

-04

Luka Grubigi¢ (UniZg) Rational surrogates June 14, 2021 23 /51



Diffusion in an homogeneous material in 1D IV

t="T, e =0.20(0)
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Diffusion in an homogeneous material in 1D V

£=0, e =0.50(0)
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Diffusion in an homogeneous material in 1D VI

t=T/2, ¢=05(0)
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Diffusion in an homogeneous material in 1D VII

t="T, e =0.50(0)
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Diffusion in an homogeneous material in 1D VIII

£=0, e =0.9B(0)
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Diffusion in an homogeneous material in 1D IX

t=T/2, e=0.95(0)
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Diffusion in an homogeneous material in 1D X

t="T, e =0.99(0)
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Diffusion in an in-homogeneous material in 1D |

Example 2: In-homogeneous material

The operator A is taken of the form
A= 7a><((1 + aX['y,Tr])aX)

with v = 2.2, The parameter v determines the contact of two materials with a
different diffusivity coefficient. The initial control u = y(0) (left), the computed
solution at time t = T/2 compared with the desired trajectory w (middle), and the
optimal final state compared with the target y* (right) for three different values of
the tolerance €.

v
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Diffusion in an in-homogeneous material in 1D I

t=0, €= 0.29(0)
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Diffusion in an in-homogeneous material in 1D Il

t=T/2, e=0.20(0)
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Diffusion in an in-homogeneous material in 1D IV

t="T, e =0.20(0)
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Diffusion in an in-homogeneous material in 1D V

£=0, e =0.50(0)
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Diffusion in an in-homogeneous material in 1D VI

t=T/2, ¢=05(0)
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Diffusion in an in-homogeneous material in 1D VII

t="T, e =0.50(0)
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Diffusion in an in-homogeneous material in 1D VIII

£=0, e =0.9B(0)
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Diffusion in an in-homogeneous material in 1D IX

t=T/2, e=0.95(0)
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Diffusion in an in-homogeneous material in 1D X

t="T, e =0.99(0)
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Difussion in 2D |

L-shaped domain

Take A= A. The initial control u = y(0) (left), the computed solution at time

t = T/2 compared with the desired trajectory w (middle), and the optimal final
state (right) at t = T for three different values of the tolerance €. The red dashed
circle marks the constraint w on the trajectory.
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Difussion in 2D Il

t=0, e = 0.19(0)
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Difussion in 2D Il

t=T/2, = 0.13(0)
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Difussion in 2D IV

t=T, e=0.15(0)
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Difussion in 2D V

t=0, e = 0.50(0)
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Difussion in 2D VI

t=T/2. e=0.58(0)
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Difussion in 2D VI

t=T, e=0.5%(0)
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Difussion in 2D VIII

t=0, e = 0.99(0)
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Difussion in 2D IX

t=T/2. e=0.9%(0)
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Difussion in 2D X

t=T, e =0.9%(0)
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