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Hashin-Shtrikman energy bounds

Introduction to composite elastic materials
Application in optimal design problems

Teaser

e Problem of explicit bound on 3D composite elastic material made of
two isotropic phases

e Open problem for decades
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Teaser

e Problem of explicit bound on 3D composite elastic material made of
two isotropic phases

e Open problem for decades

e Everybody knows that it can be solved but no one was willing to
undertake the task
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Introduction to composite elastic materials
Application in optimal design problems

Teaser

e Problem of explicit bound on 3D composite elastic material made of
two isotropic phases

e Open problem for decades
e Everybody knows that it can be solved but no one was willing to
undertake the task

e minimization of nonsmooth convex (piecewise quadratic function) in
RS
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Hashin-Shtrikman energy bounds

Introduction to composite elastic materials
Application in optimal design problems

Linearized elasticity system
Let 2 C R be open and bounded, A € L>®°(€); Symﬁ) satisfying
2 -1 Lo
Ag:E>algl”, A €:€ZEIEI ,  §€Symq

and f € H™1(€; RY). Linearized elasticity system with homogeneous
Dirichlet boundary condition:

{ —div (Ae(u)) =f
u € H}(Q; RY),

where e(u) = (Vu+ Vu').
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Linearized elasticity system
Let 2 C R be open and bounded, A € L>®°(€); Symﬁ) satisfying
2 -1 Lo
Ag:E>algl”, A €:€ZEIEI ,  §€Symq

and f € H™1(€; RY). Linearized elasticity system with homogeneous
Dirichlet boundary condition:

—div (Ae(u)) =f
u € H}(Q; RY),
where e(u) = (Vu+ Vu').
) - mixture of two isotropic elastic phases with stiffness tensors
Ay =214+ (fﬂ — %) Lely, Ay =2usls+ (/iz - %%) LI,
where 0 < p1 < pg and 0 < K1 < Ko.

A(x) = x(x)A1 + (1 = x(x)A2, x € L=(Q;{0,1}).
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Introduction to composite elastic materials
Application in optimal design problems

Composite elastic material
e fine mixture of materials (on microscale)
e prevalent in nature, and among engineered materials (sandstone,
clouds, bones, wood, concrete, steel and fiberglass)
e they often combine (desired) attributes of the constituent materials
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Composite elastic material

e fine mixture of materials (on microscale)

e prevalent in nature, and among engineered materials (sandstone,
clouds, bones, wood, concrete, steel and fiberglass)

e they often combine (desired) attributes of the constituent materials

Definition (Composite material)

If a sequence of characteristic functions
Xn € L*(2;{0,1}) and tensors

A" (z) = Xxn(2) A1 + (1 = Xn(2)) Az
satisfy

Xn = 0
A" A A,
then it is said that A is homogenised tensor

of two-phase composite material with
proportions 6 of first material and

microstructure defined by the sequence (xn )

4

Kre&imir Burazin

Definition (H-convergence)

A sequence of tensor functions A" is said to
H-converge to A if for every f the sequence
of solutions of

—div (A"e(uy)) =f
Un € H(ll(Qv Rd) 5

satisfies u, — uin Hj(€; R?),
A"e(u,) — Ae(u) in L3(Q; Symyq),
where u is the solution of the homogenised
equation
—div (Ae(u)) =f
{ u e Hs (% RY),

Explicit Hashin-Shtrikman bounds in 3D linearized elasticity and applications
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Application in optimal design problems

Laminated materials

Simple laminates: if x», depend only on 1, then

O(A — Az) ' = (A1 — A2) ' + (1 —0) foler),

where f2(e1)€ : € = .- (|€e1|* — (€e1 - e1)?) + 571 (€en - e1)?, forany

& € Symgq, with Ao = k2 — 2u2/d.

Ayl Ay [Ay A

trikman bounds in 3D linearized elasticity and applications
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G—closure and bounds on composites

Set of all composites:
A:={(6,A) € L=(;[0,1] x Symy) : A(x) € G(0(x)) ae. x € Q}

G—closure problem: for given 8 € [O7 1] find all possible homogenised (effective) tensors
A from G(6) - an open problem
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G—closure and bounds on composites

Set of all composites:
A:={(6,A) € L=(;[0,1] x Symy) : A(x) € G(0(x)) ae. x € Q}

G—closure problem: for given 8 € [O7 1] find all possible homogenised (effective) tensors
A from G(6) - an open problem

Bounds — inequalities correlating various physical and/or microstructural quantities
(averaged stress and strain fields, energy, effective stiffness, volume fractions)
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G—closure and bounds on composites

Set of all composites:

A:={(6,A) € L=(;[0,1] x Symy) : A(x) € G(0(x)) ae. x € Q}
G—closure problem: for given 8 € [O7 1] find all possible homogenised (effective) tensors
A from G(6) - an open problem

Bounds — inequalities correlating various physical and/or microstructural quantities
(averaged stress and strain fields, energy, effective stiffness, volume fractions)

Why are they useful?
® quick and simple estimate for the effective tensor
® validation of numerical shemes and experimental results

® important in structural optimization
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Bounds on energy

(Optimal) bounds on G(0): for arbitrary A* € G(6), £ € Symq we have

J0.€)= min AE:E<AEES max AL:E=:[1(6.6)
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Bounds on energy

(Optimal) bounds on G(0): for arbitrary A* € G(6), £ € Symq we have
_ = i E<SAE L €=
J-(0,8) = min AL:L<AE:L< max AL: L= [4(0,€)

f— and fy are called lower (upper) Hashin-Shrrikman bounds on primal energy
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Bounds on energy

(Optimal) bounds on G(0): for arbitrary A* € G(6), £ € Symq we have

J0.€)= min AE:E<AEES max AL:E=:[1(6.6)

f— and fy are called lower (upper) Hashin-Shrrikman bounds on primal energy

Bounds on complementary (dual) energy: for arbitrary A* € G(0), o € Syma we have

fo,0) = Aglér(lg)A_la o <AT'o:0< A@SE)A_l‘T co=: fi{(0,0)
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Bounds on energy

(Optimal) bounds on G(0): for arbitrary A* € G(6), £ € Symq we have
_(0,€):= min A£:E<A'E:¢< A= f (0
f-(6,€) Alin ALLS AL LS max AL:E f+(6,8)
f— and fy are called lower (upper) Hashin-Shrrikman bounds on primal energy
Bounds on complementary (dual) energy: for arbitrary A* € G(0), o € Syma we have

fo,0) = Aglér(lg)A_la o <AT'o:0< A@SE)A_l‘T co=: fi{(0,0)

f£ and f£ are called lower (upper) Hashin-Shrrikman bounds on complementary energy
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Bounds on energy

(Optimal) bounds on G(0): for arbitrary A* € G(6), £ € Symq we have
_ = i E<SAE L €=
J-(0,8) = min AL:L<AE:L< max AL: L= [4(0,€)

f— and fy are called lower (upper) Hashin-Shrrikman bounds on primal energy

Bounds on complementary (dual) energy: for arbitrary A* € G(0), o € Syma we have

fo,0) = Aglér(lg)A_la o <AT'o:0< A@SE)A_l‘T co=: fi{(0,0)

f£ and f£ are called lower (upper) Hashin-Shrrikman bounds on complementary energy

Milton (2002): "benchmark against which most experimental results are compared”
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Hashin-Shtrikman energy bounds

Introduction to composite elastic materials
Application in optimal design problems

Hashin-Shtrikman bounds

Hashin, Shtrikman (1962, 1963), Allaire, Kohn (1993)
e |ower bound on the complementary energy:

fo0,0)=Ar'c:0+0 max [20:n— (AT —A;")”

nESymq

where g°(n) = max (fs(e)n:n) =

ecS

=Asm:n— min {(2u2m1 + Aatr(n))?

2u2 + A2

min—(1-0)g°(m)],

ooy (2u2ma + Aatr(n))? }
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Hashin-Shtrikman bounds

Hashin, Shtrikman (1962, 1963), Allaire, Kohn (1993)
e |ower bound on the complementary energy:

fo(0,0) = A;'c i o+6 max [20 in— (A7 — A;l)_ln n—(1- 9)9“(17)} ,

nESymq

where g°(n) = max (fs(e)n:n) =

ecS

=Asn:n— min {(2u2m1 + Xatr(m))?, ..., (2uana + datr(n))? }

2u2 + A2

e upper bound on the primal energy:
Fr(0,6) = Asg:&+0 min [2€:m+ (A2 — A1) 'nin— (1=0)h(n)],

where h(n) = min (f2(e)n :n) = min {n7,..., 77}

1
ecSd—1 2112 + A2
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Explicit Hashin-Shtrikman bounds

— . ] . — 71 . —
£1(0,€) = Ast €40 _min [2e.n+<A2 Al

win o3}

To obtain explicit bound one needs to solve the above nonsmooth convex
minimization problem in R with d + 5 parameters.
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Explicit Hashin-Shtrikman bounds

— . 3 . _ -1 . _ 3 2 2
f+(9’€)_A25'5+9n?s‘§,&d{QE'WHAQ A" mim 2M2+A2mm{m,---7nd}]

To obtain explicit bound one needs to solve the above nonsmooth convex
minimization problem in R with d + 5 parameters.

d=2:
Gibiansky, Cherkaev (1984) - plate equation, B., Jankov (in preparation)
Allaire, Kohn (1993). Grabovsky (1996), B., Crnjac, Vrdoljak (2021)
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Explicit Hashin-Shtrikman bounds

_ 1—-6 .
F+(0,€) = Az€: €40 min {2£:n+(A2—A1) 'mim— - min nf,---vnﬁ}]
mqg y 2

To obtain explicit bound one needs to solve the above nonsmooth convex
minimization problem in R with d + 5 parameters.

d=2:
Gibiansky, Cherkaev (1984) - plate equation, B., Jankov (in preparation)
Allaire, Kohn (1993). Grabovsky (1996), B., Crnjac, Vrdoljak (2021)

d=3: elementary but rather tedious and formidable calculations — a task
that no one was willing to undertake

partial results: Allaire (1994), Gibiansky, Cherkaev (1987) - one material
being void or rigid
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Hashin-Shtrikman upper bound on the primal energy in 3D

1—

- 0
0,€) = A€ : €40 min [2¢: As—A) 'pin— o
J(0,8) = A€ - &+ nggygﬂg[& nt(Az— A nin - o

min{nf,n;,ng}] ,
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Hashin-Shtrikman upper bound on the primal energy in 3D

1—

- 0
0,€) = A€ : €40 min [2¢: As—A) 'pin— o
J(0,8) = A€ - &+ nggggns[ﬁ nt(Az— A nin - o

min{nf,ns,ng}] ,

&
3(1—-6 1/1 2
0k = Ko — K1, U= 2 — 1, C (7) k= (———) b=2|&]|,

:4,u2+3/@2’ T\ & &
35 Tk 1k k
A = k @Jrk: k
k k ﬁJrk
2 .
oot o (An =) = i "
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Hashin-Shtrikman upper bound on the primal energy in 3D

1—

- 0
0,€) = A€ : €40 min [2¢: As—A) 'pin— o
J(0,8) = A€ - &+ nggggns[ﬁ nt(Az— A nin - o

min{nf,ns,ng}] ,

&
3(1—-6 1/1 2
0k = Ko — K1, U= 2 — 1, C (7) k= (———) b=2|&]|,

:4,u2+3/@2’ T\ & &
35 Tk 1k k
A = k @Jrk: k
k k ﬁJrk
2 .
oot o (An =) = i "

b-n+t— min
(n,t)ERA )

A7777_C7712§t, 2:17273
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Hashin-Shtrikman upper bound on the primal energy in 3D

Solve it by using Karush-Kuhn-Tucker theorem
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Hashin-Shtrikman upper bound on the primal energy in 3D

Solve it by using Karush-Kuhn-Tucker theorem

High number of parameters makes calculations overwhelming (symbolic
computation in Mathematica)
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Hashin-Shtrikman upper bound on the primal energy in 3D

Solve it by using Karush-Kuhn-Tucker theorem

High number of parameters makes calculations overwhelming (symbolic
computation in Mathematica)

o = po — 1, 0k = Ko — K1 and y; = 3k; + 4p;, 0 = 1,2, and define
the following functions:

(1= 0)(20u(y — 2) — 3d(y + 22)) +72(z — x)
=3ouf(x,y,2) —v2(30k(z+y+2) —20u(—2z 4+ y + 2))
—27(1 — O)duokx + v2(30k(3z —y + 2) + du(z — v))

9(1 — O)okx — y2 (22 —y — 2).

<

—~ o~ o~
K
=
I

S N N
|
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Explicit upper Hashin-Shtrikman bound on the primal energy in
3D

Theorem

In three dimensional, well-ordered case, let & be a symmetric matrix with eigenvalues &1, &2
and &3 and corresponding orthonormal eigenvectors ey, ez and es. Then, the upper
Hashin-Shtrikman bound on primal energy can be expressed explicitly by exactly one of the
following five cases. In each case (except the case D) one is free to take any choice
(4,7,k) € {(1,2,3),(2,3,1),(3,1,2) }.

A If

T, 65, &)9(&is &5, &) <0
f(£i7€k7£j)g(£i7£k7£j) <0,
then

(26(26; — & — &) + 30(& + & + @))2‘

£1(6,6) = (0A1+(1-0)A2)€ : €~(1-0)0 30 + (10

4)
This bound is achieved by a simple laminate with the lamination direction e;.
B If...
E
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Equivalence between upper primal bound and lower
complementary bound.

1 1
For fixed 6, Eff(H, -) is Legendre-Fenchel transformation of §f+(6, )
and vice-versa:

1 1
§fi(9’0-)2561%31}r<1d a:£—§f+(9,£) . (5)

[+ is strictly convexin§ = f€ is smoothin o
fCcisstrongly convex 0 =  f is smoothin &
It holds:

o 3/°(0,0)=0:&—5[1(0,€), where V[ (§) =0
e V f, is bijection Symgq — Symgq
e A* saturates f if and only if it saturates f¢

Thus, we can explicitly calculate the lower complementary bound.
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Optimal design problem

For0 < g < |9, f € H71(; RY) fixed:

J(x) ::/Qf(x)~u(x)dx—>min,
x € L>*(Q;{0,1}), /Qxdx:q.

A = A(x) = x(x)A1 + (1 — x(x)) Az
| ue HY(Q; R?) solves — div (Ae(u)) = f
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Optimal design problem

For0 < g < |9, f € H71(; RY) fixed:

J(x) ::/Qf(x)~u(x)dx—>min,
x € L>*(Q;{0,1}), /Qxdx:q.

A = A(x) = x(x)A1 + (1 — x(x)) Az
| ue HY(Q; R?) solves — div (Ae(u)) = f

Solution does not exists!
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Optimal design problem

For0 < g < |Q|, f € H71(Q; RY) fixed:

J(x) ::/Qf(x)~u(x)dx—>min,
x € L>*(Q;{0,1}), /Qxdx:q.

A = A(x) = x(x)A1 + (1 — x(x)) Az
| ue HY(Q; R?) solves — div (Ae(u)) = f

Solution does not exists!

X EL®(Q:{0,1}) -+ 6 L([0,1))
A =xal+ (1—-x)pI A e€G(F) aeon(
classical material composite material - relaxation
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Relaxation by the homogenization method

J(O,A) = /Qf(x) u(x) dx—l—l/QH(x) dx. — min,
(0,A) € {(,A) € L°(;]0,1] x Syml) : A € G(0) ae. on O}
u € H{(Q; RY) solves — div (Ae(u)) = f

By the principle of minimal complementary energy we have

min J(#,A) = min min / A7lror dx+l/ 0(x) dx.
(0,A)cA (0,A)eA r€L?(2;Symy) Q
—leT finQ

Kresimir Burazin Explicit Hashin-Shtrikman bounds in 3D linearized elasticity and applications



Hashin-Shtrikman energy bounds

Introduction to composite elastic materials
Application in optimal design problems

Neccessary conditions of optimality

Theorem

If (6%, A*) is a minimizer of the objective function .J, and if o* is the
unique corresponding minimizer, then o* = A*e(u*), where u* is the
state function for (6%, A*). Furthermore, A* satisfies, almost everywhere
inQQ,

A lo* ot = (0%, 0%), (6)

while 0% is the unique minimizer of the convex minimization problem

Orglelgl(f_(ﬁ,a )+10), ae onQ. @)

Kresimir Burazin Explicit Hashin-Shtrikman bounds in 3D linearized elasticity and applications



Introduction to composite elastic materials
Hashin-Shtrikman energy bounds
Application in optimal design problems

Algorithm

Take some initial 8° and A°. For k& > 0:
© Calculate uk, the solution of

—div (AFe(uF)) = f
{ uf € HY(; RY),

and define o* := AFe(ub).
® Forx € Q, take 0k+1(x) as the zero of the function
f(’
0 — 0,0"(x
oL 0.0 x) +
and if a zero doesn't exist, take 0 (or 1) if the function is positive (or negative) on [0, 1].
© Let (A*+1)(x) be the minimizer in the definition of £¢ (#*+1(x), o (x)).
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Conclusion

e We have explicitly computed the upper primal bound and the lower
complementary Hashin-Shtrikman bound

e it has a number of possible applications in engineering and science of
composite materials

e What about lower primal bound and upper complementary bound?
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Conclusion

e We have explicitly computed the upper primal bound and the lower
complementary Hashin-Shtrikman bound

e it has a number of possible applications in engineering and science of
composite materials

e What about lower primal bound and upper complementary bound?
...not the journey that | would take twice
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Conclusion

e We have explicitly computed the upper primal bound and the lower
complementary Hashin-Shtrikman bound

e it has a number of possible applications in engineering and science of
composite materials

e What about lower primal bound and upper complementary bound?
...not the journey that | would take twice
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