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Outline

@ Power system basics
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Power system operation

estimate w

Optimization Offline optimization: dispatch based on

forecasts of renewables and loads

Re-scheduling set-points: to mitigate
severe forecasting errors (redipatch)

Online control: based on frequency
Controller

A\

1

SUPPLY DEMAND
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Challenge I: Uncertainties (renewable energy sources)

Traditional
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Challenge I: Uncertainties (renewable energy sources)

Traditional Renewables
o Traditional operation to a big extent relies on repetitiveness

@ increased uncertainties & fluctuations — inefficient and infeasible to separate
optimization and control
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Power system basics

Challenge I: Uncertainties (renewable energy sources)

increased uncertainties & fluctuations — inefficient and infeasible to separate
optimization and control

& F — Redispaton Re-scheduling costs
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[Bundesnetzagentur, Monitoringbericht 2011-2019]
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Congestion Management Costs NL

Costs for Congestion Management increased by 27% in 2020

Redispatch and Restriction Costs in the Netherlands
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= This figure shows redispatch and restriction costs in the Netherlands. Restriction concerns contracts with market parties to
withhold a share of production for a certain period. Total costs increased from €61,0 million in 2019 to € 77,6 million in

** 2020 with a slight increase of redispatch volume activated. A significant part of the cost increase is related to restriction
contracts.
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Challenge Il: Deregulation

electrical energy is a peculiar product: no large scale buffering, no routing, trades
in energy (economy) and provision in power (physics/control) - no straightforward
transfer of knowledge from other fields
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Outline

© Market-based operation (STATIC)
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Optimization: Maximizing social welfare

Feedforward, slow (energy time-scale)

Primal
COSTS BENEFITS

min Ci(pi) — Bj(d;) (= max social welfare)
{p: € Pi} {d; € D;} ; ;
—_——— ——

PRODUCTION DEMAND

n m

subject to sz- = Zd]’ (balance supply and demand)

i=1 j=1
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Optimization: Maximizing social welfare

Feedforward, slow (energy time-scale)

Primal
COSTS BENEFITS

min Ci(pi) — Bj(d;) (= max social welfare)
{pi € Pi}.{d; € D;} ; ;
—_——

PRODUCTION DEMAND

subject to Zp,- = Zd]’ (balance supply and demand)
i=1 j=1
Dual max £()\)
XER
where

E()\):piepr?,g;ebj ;Ci(pl EZ: +)\(Zd _sz)

Assumption: convexity. C;(-) convex functions, B;(-) concave fun,, P;,D; convex.sets,
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Optimization: Maximizing social welfare - Energy market

Market operator

m

Iilé‘iﬂ){(g()\) < determine A : ;dj = ;pi

Rational behaviour of market players (max its own benefits)

Demand’s local minimizations
Supplier's local minimizations
df = argming ¢p, Ady — Bi(dq)
pi = argmin, cp, Ci(p1) — Apy e

dy = argming, cp, Ade — Bi(d2)
Py = argmin, cp, Co (p2) — Ap2

. ' dy, =argming p  Ady — Bi(dm)
pp, =argmin, cp  Cn(pn) = Apn

A* which solves the above problem is the (market clearing) price

Andrej Joki¢ (FSB, University of Zagreb) Market-based power systems 03.02.2014.  13/48



Optimization: Maximizing social welfare - Energy market

Market operator

i : - *
r;\lgﬂ){((()\) < determine \ : Zd] i_zlpl

j=1

Rational behaviour of market players (max its own benefits)

Supplier’s local minimizations Supply

. A
pl =argmin, cp, Ci(p1) — Apy
p; = argmin,, p, Ca2(p2) — Ap2
py, = argmin, «p  Cpn(pn) — Apn - >

A* which solves the above problem is the (market clearing) price
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Supply Demand
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Zp*iZZdj* power

blue curves - BIDS: 8;(p;), B:(d;) — incremental costs (in perfect competition)
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Market-based operation

Benefits of market-based (price-based) operation

In mathematical terms we reached (via dual) the same solution (as primal).
Why deregulation? new solution architecture: new players (market operators,
competing parties),definition of who does what, prices and bids as protocols for
coordination
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Market-based operation

Benefits of market-based (price-based) operation

In mathematical terms we reached (via dual) the same solution (as primal).
Why deregulation? new solution architecture: new players (market operators,
competing parties),definition of who does what, prices and bids as protocols for
coordination

€/MWh €/MWh
price

s ———

e
cean

time (months, years) time

a) price-cap regulation b) cost of service regulation
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Market-based operation

Benefits of market-based (price-based) operation

In mathematical terms we reached (via dual) the same solution (as primal).
Why deregulation? new solution architecture: new players (market operators,
competing parties),definition of who does what, prices and bids as protocols for
coordination

€/MWh €/MWh
price

s ———

e
cean

time (months, years) time
a) price-cap regulation b) cost of service regulation
€/MWh

\

»

time
“invisible hand of market” (Solution architecture matters)
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Outline

© Congestion management (STATIC)
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Congestion management

21' 4

PSPy
%‘1 =

Cheap production Expensive production

Line flow limits:

@ physical: thermal limits, stability limits

@ contingency limits (robustness): physical limits following contingency
Congestion is a problem on more time-scales (day-ahead, real-time).
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Congestion management

Power flow equations (DC approximation)

P1 b/\fl —b12 N —bln 91
b2 —bi2 sz oo —ban 02
n —bin  —ban ... by, O

with b/\[Z = Zje/\fi bij

Power flow equations
p= B0O J
Nodal power inje.ctions: Remark: BT = B, B1, = 0.
p; < 0 consumption,
p; > 0 production
DC line power flow model: Line flow limits
pij = bij(0i — 0;) = —pjs L0 < s

bi; = susceptance of line
0; = voltage phase angle
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Congestion management

Optimal power flow problem

p; = node aggregated controllable power injection with assigned economic
objective function J;(p;):

@ p; <0, net consumption, J;(p;) = —B;(pi)

@ p; > 0, net production, J;(p;) = C;(p;)
¢; = uncontrollable, price inelastic, nodal power injection (net consumption:
¢i < 0, net production : ¢; > 0).

Optimal power flow problem (OPF)

min JZ i
i ; (p:)
subjectto p+q—B6=0

p<p<pD
Lo <eg
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Nodal pricing
KKT conditions (after “including back” the limits {p,,p;} into the bids 3;(p;))

OPF problem
KKT conditions

min > Ji(pi) B =\ =0

_ =t p*—BO* =0

subject top — B8 =0 By o LT 0
* + u‘k —

P<p=<p
- 0<(-LO*+e) L p* >0
Lo <eg y
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Congestion management

Nodal pricing

KKT conditions (after “including back” the limits {p,,p;} into the bids 3;(p;))

OPF problem

min Jz i
i ; (p:)
subject top — B8 =0

p<p<p
Lo <eg

KKT conditions

Bp*) — A" =0

p*—BO* =0

BN+ LTy =0
0<(-LO*+e) L

W >0

v

Singe price in case of no congestion

—Lo*+es <0 = u'=0

= BN =0

M =1,\ A€ER
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Congestion management

Nodal pricing
KKT conditions (after “including back” the limits {p,,p;} into the bids 3;(p;))
OPF problem
KKT conditions
min > Ji(pi) B(p*) — A =0
’ i=1

p*— BO* =0
subject top — B8 =0 T
BN+ L' 'p =0

P<p=<p
- 0<(-LO*+e) L p* >0
Lo <eg y

Singe price in case of no congestion

—LO*+Ee <0 = =0 = BN =0 = M =1,AA€cR

In case of singe congested line, optimal nodal price in general have different value
for each node.  (BA\* = —LTp*)
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Nodal pricing

Example

g 40
1 4 =9
n
s m . .
2 0

Line power flow

!
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© Market-based robust spatial distribution of ancillary services (STATIC +
DYNAMIC)
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|
Spatial allocation of reserves (balancing ancillary services)

21' _ 4

PSPy
; 1 )

Cheap production Expensive production

Allocation of cheaper reserves (NODE 1) behind congested lines cannot cover for
uncertain fluctuations in NODE 2.
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In current system, reliability
is accounted for in
“aggregated” form here

Time [s]

Size of reliability margin: reliability vs. efficiency trade-off

RELIABILITY MARGIN I/
Economically optimal working point is often on the

border df feasible region




-~ Dbwawg |
Problem definition

Robust congestion constraints

The participation function - a priory fixed structure (more options make sense),
parameters are gains in secondary control loops

F(t) =~@* (k),a" (k). q(t))
(k) = purchased and allocated up-regulating AS
~ (k) = purchased and allocated down-regulating AS
av (k) and @~ (k) are vectors defining spatial distribution of AS

+

QD

Uncertainty model
q(t) € Q(k) = {q | ¢ = R(k)w, w € W(k) CR™}
W(k) = conv{wi (k),...,or(k)}, 0 € W(k)

Robust congestion constraints

L6 < Al(k)  for all D(k) where

> R(k)w + (a +(k) ( ), R(k)w) = B,
D(k) :={0 ~

(k=151 R0 }
Market-based power systems 03.02.2014. 25/;8




Control area 1

Control
area3

Control area 2

Spatial distribution of AS:
Shaping the “uncertainty tube”>

Get reliability for best costs
Possible to include optimal

cooperation between control
areas

Power
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Line power flow

Line power flow

100 100
a0 1 = 50
0 ] =R
50 : 1 — 50
10% Y n 2 |
-100 -100 :
i 2 4 6 8 0 0 2 4 6 8 0
Line Line
(a) Power flows for 10% uncertainty level. (b) Power flows for 20% uncertainty level.
100 : — : 100
50 1 = 50 ] Q
0 1 2 0
50 ] = 5 \
0% 40%
-ion -ioo
0 2 4 B 8 10 0 2 4 B 8 10

line line

(¢) Power flows for 30% uncertainty level. (d) Power flows for 40% uncertainty level.



Line power flow
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Outline

© Closed loop price-based operation (DYNAMIC)
@ Optimization as feedback controller
@ Price-based control of power systems
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Optimization as feedback controller
Optimization as feedback controller

estimate w

Optimization

Increased uncertainties & fluctuations —
inefficient and infeasible to separate
optimization and control

Controller

\/
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Closed loop price-based operation Optimization as feedback controller

Optimization as feedback controller

estimate w

Optimization Optimization

Controller
Controller
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Closed loop price-based operation Optimization as feedback controller

Theory literature inspired by power systems
survey slide by Florian Dorfler, ETH Zurich

m |ots of recent theory development stimulated by power systems problems

[Simpson-Porco et al, 2013]_’ [Bolognani A Survey of Distributed Optimization and Control

etal, 2015], [DallAnese & Simmonetto, Algorithms for Electric Power Systems

2016], [Hauswirth et al., 2016], [Gan & Daniel K. Molzahn,* Member, IEEE, Florian Dorfler,! Member, [EEE, Henrik Sandberg Member, IEEE,
Steven H. Low." Fellow, IEEE, Sambuddha Chakrabarti.¥ Stedent Member, IEEE,

LOW, 201 6]’ [Tang & LOW, 201 7]’ . Ross Baldick.% Fellow, IEEE, and Javad Lavaei.** Member, IEEE

m early adoption: KKT control [Jokic et al, 2009]

m |iterature kick-started ~ 2013 by groups from
Caltech, UCSB, UMN, Padova, KTH, & Groningen

m changing focus: distributed & simple

i Emiliano Dall'Anese
— centralized & complex models/methods Andrea Simonetto

Marcelio Colombino

= implemented in microgrids (NREL, DTU, EPFL, ...) SRR
& conceptually also in transactive control pilots (PNNL)

Andrej Joki¢ (FSB, University of Zagreb) Market-based power systems 03.02.2014.
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Optimization as feedback controller
Optimization in the loop (KKT controller)

Desired steady-state
min J(y)
y

Optimization
subject to Ly = h(w)

9(y) < r(w)
w e W

(open (inputs/outputs), real-time,

feedback interconneted)

1y

flz,w,u)

y= g(m, w)

1
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Optimization as feedback controller
Optimization in the loop (KKT controller)

= Ka( Ly — h(w) ) Desired steady-state
50 = Lu9) — r(w) ) +v min (1)
ie = (L zx+ Vg(y) + VJI()) subject to Ly = h(w)

0<v L Kozu+K.(g(y)—r(w)))+v>0 9(y) < r(w)
weW
U= (. J
flz,w,u)
y = g(m, w)

Tu,
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Optimization as feedback controller
Optimization in the loop (KKT controller)

’ 1
(e A
1 ! ( )
E #x = Ki( Ly — h(w) |) i | Desired steady-state
E tp = Lu(g(y) —r(w) ) +v | min ()
! 1
| ge = (L zx + Vg(y) + VJI(v)) | subject to Ly = h(w)
1 1
[ 0<v L Kozu+ Ku(|gy) —r(w))+v>0 |, 9(u) < r(w)
! ! w e W
| U = Tc | § J
[N 1
1 1
1 y u ! .
! ! ! KKT conditions
1 ! T
1 L' )\ 1 =
i = f(z,w,u) | VI) + + Vgl =0
! ' Ly —h(w)=0
1 Yy = g(xv u') \
| L 0<—g(n) +r(w) L p>0
:\"_"_""_"_"T _________________ X buit into cl.-loop stead.stat.sys.
w
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Optimization as feedback controller
INTERMEZZO: complementarity systems

Complementarity system

&= f(x,w)
z = h(x,w)
0<zlw>0

0<zlw>0 iscompact fromfor z>0, w>0, 2Tw=0
@ CS structure — rich theory (van der Schaft, Schumacher, Heemels, Camlibel,
Brogliato, ...)

@ Suitable framework for many applications (physics, optimization, economy),
e.g.. constrained mech. systems, elect. circuits, optimal control, oligopolistic
markets, Leontiev economy, ...
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Toy example

-25 0 -5 T 0 25 0\ /.
0 -5 —=15|{a]+ 0 |w+| 0 5 (ul)
01 01 -0.2/ \a3 -0.1 0 0 2

System

1
To
T3

Y1 1 0 0 x1
Y3 0 0 1 XT3
——
Y

Optimal working point

T
s Y1 3 0 Y1 Y1
—4 —4
e (yz) <0 1> (yz) +( ) <y2> Observe
. 0.1y1+0.1y2—0.3y3 =
subject to |y1 +y2 = w 0'1301 Y2 Y3

(1 —4.7)% + (y2 — 4)* < 3.5° in steady state
for w e [4,11.5]
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Closed loop price-based operation Optimization as feedback controller

Toy example

—2.5
0
0.1
(1
0

System

1
)
T3
Y1
)
Y3

——
Yy

0
-5
0.1

(e}
o = O

il

-5
—15

T1
€2
€3

X1 0
T2 | + 0
—0.2 T3 —0.

)

2.5

0
0

The controller
Ty = K x3,

iy = Ku((x1 —4.7)° + (22 — 4)® — 3.5° +v),

o 1 2z, — 9.4

0<v L (Koxp+ (z1 —4.7) + (22 — 4)* —3.5° +v) >0,

U= T,

Andrej Joki¢ (FSB, University of Zagreb)
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Closed loop price-based operation Price-based control of power systems

Distributed, real-time, price-based control of power sys.

ApL = L(S—EC

Nodal pricing controller

AN V] —K LT\ [z N ~-K; 0 Af
) 0 0 Ty 0 K, \ApL+w)’
0< w L Koxy+Apr+w > 0,

A= (I, 0 @2) : |

p—Bs+p=0, (global)

B A+ L =0, why does it work?
VJp)—A+v" —v- =0, (local) B)\—I—LT,LL—I—Af*IZO,
0< (—Lé+2) L pu >0,
: e 17 (B LT)=0 = 1¢Im(B LT)

0< (=p+p) L v© >0,
0< (;)Jr[l) L v >0

Andrej Joki¢ (FSB, University of Zagreb) Market-based power systems
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Closed loop price-based operation Price-based control of power systems

Distributed, real-time, price-based control of power sys.

ApL = L(S—EC

Nodal pricing controller

l")\ o 7KAB 7K)\LT T\ —Kf 0 Af
()= ) ) (0 8) ()

0< w L Kexy,+Apr+w > 0,

=t 0(5)

no knowledge of cost/benefit functions of producers/consumers required

required no knowledge of actual power injections (FEEDBACK!)
required: B and L

preserves the structure of B and L
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Closed loop price-based operation Price-based control of power systems

Distributed, real-time, price-based control of power sys.

APL = L(S—EC

Nodal pricing controller

x\ _ [(—K\B —-]KTA.Z;T_ T\ -K; 0 Af
G) =% %) @) (0 &) (k)

0< w L Kyxy+Apr+w > 0,

i o(z).

Max
[x.], 1,0 [Ap, ]
di +| I/ +LAp. ],
U L e e
> [K, ]

max-based complementarity integrator
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Closed loop price-based operation Price-based control of power systems

Distributed, real-time, price-based control

B)\—i—LT,u =0, A\ prices for local balance, p prices for not overloanding the lines

A1
b2z —bia  —bis 0 bio b3 A2
—bia  big2z  —bas 0 —bi2 0 A3 —0
—biz —baz 132331 —b3u 0  —bi3 A4 -
0 0 —bay b34 0 0 12
H13
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Price-based control of power systems
Distributed, real-time, price-based control

40 n L L L L
o 5 10 15 20 25 30 3B 40

nz=131
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Closed loop price-based operation Price-based control of power systems

Distributed, real-time, price-based control

Ag ACE Optimality conditions
Power sys.
(BRPs & physical
system)
Ap, X\ K
o Bp*)—A"=0
p* _ Be* =0
— Price .
IY(;')}‘] controller B\ + L /1’* =0
,,,,,, CrluD) 0<(-L6"+e) L p >0

Real-time nodal price based SC controller (each control area balanced separately)
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Closed loop price-based operation Price-based control of power systems

Distributed, real-time, price-based control
Optimality conditions

B(P™) =" =0
p*—BO* =0
BN+ Ly =0

0< (—LO* +e) L u >0

Real-time nodal price based SC controller (each control area balanced separately)

) —K\B —K,\LT 0\ [z 0 0 ACE 0
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Price-based control of power systems
Distributed, real-time, price-based control

Ag ACE Optimality conditions
Power sys.
(BRPs & physical
system)
Ap, X\ K
o Bp*)—A"=0
p* _ Be* =0
— Price .
IY(;')}‘] controller B\ + L /1’* =0
,,,,,, CrluD) 0<(-L6"+e) L p >0

Real-time zonal price based SC controller (each control area balanced separately)

9:c>\ —K\B —K,\LT 0\ [z 0 0 ACE 0
Ty | = 0 0 0 Ty | + 0 K, A + | Kaw
G 0 0 0/ \z., K, 0 pe 0

0<w L Kozxy+Apc+w>0

)\z:( 0 E) (i:) Ap=T(\z)
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Price-based control of power systems
Distributed, real-time, price-based control

Optimality conditions

Bp")—A"=0
p*—BO* =0
BN +L" =0

0< (—LO* +e) L u >0

Real-time zonal price based SC controller (each control area balanced separately)

9:c>\ —K\B —K,\LT 0\ [z 0 0 ACE 0
Ty | = 0 0 0 Ty | + 0 K, A + | Kaw
Fo 0 0 0/ \z., K, 0 pe 0

0<w L Kozxy+Apc+w>0
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Price-based control of power systems
Distributed, real-time, price-based congestion control

CONTROL AREA 3
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Outline

@ Conclusions
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Conclusions

Conclusions and messages

@ “smart? = hidden + invisible”
@ make it work — make it big — make it sustainable (massive automation)

@ extremly complex system (many NP-hard problems, large-scale,...) - yet it
works very robustly

@ Today's robustness (work + big): physics on our side + partly due to
conservative engineering

o Future: changes in physical layer + smart? (massive automation) —
increased complexity. Robustness (fragility?), efficiency, scalability?

o think in terms of: arhiteicture (layering), modules and protocols
@ Optimization (duality!): holistic approach to market (and control)

@ Huge area for important research (exciting parallel research in control systems
field)
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UNIJE (smart island Unije): sustainable island

http://insulae-h2020.eu/  https://insulae.wp.fsh.hr/
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