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Power system basics

Power system operation

System

Controller

Optimization

−

w

estimate w
Offline optimization: dispatch based on
forecasts of renewables and loads

Re-scheduling set-points: to mitigate
severe forecasting errors (redipatch)

Online control: based on frequency
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Power system basics

Challenge I: Uncertainties (renewable energy sources)

Traditional
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Power system basics

Challenge I: Uncertainties (renewable energy sources)

Traditional Renewables
Traditional operation to a big extent relies on repetitiveness
increased uncertainties & fluctuations → inefficient and infeasible to separate
optimization and control
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Power system basics

Challenge I: Uncertainties (renewable energy sources)

increased uncertainties & fluctuations → inefficient and infeasible to separate
optimization and control
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Power system basics

Challenge II: Deregulation

electrical energy is a peculiar product: no large scale buffering, no routing, trades
in energy (economy) and provision in power (physics/control) - no straightforward
transfer of knowledge from other fields
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Market-based operation (STATIC)

Optimization: Maximizing social welfare
Feedforward, slow (energy time-scale)

Primal

min
{pi ∈ Pi}︸ ︷︷ ︸
PRODUCTION

,{dj ∈ Dj}︸ ︷︷ ︸
DEMAND

COSTS︷ ︸︸ ︷
n∑
i=1

Ci(pi)−

BENEFITS︷ ︸︸ ︷
m∑
j=1

Bj(dj) (= max social welfare)

subject to
n∑
i=1

pi =
m∑
j=1

dj (balance supply and demand)

Dual max
λ∈R

`(λ)

where

`(λ) = min
pi∈Pi,dj∈Dj

n∑
i=1

Ci(pi)−
m∑
j=1

Bj(dj) + λ
( m∑
j=1

dj −
n∑
i=1

pi

)
Assumption: convexity. Ci(·) convex functions, Bj(·) concave fun., Pi,Dj convex sets.
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Market-based operation (STATIC)

Optimization: Maximizing social welfare - Energy market

Market operator

max
λ∈R

`(λ) ⇔ determine λ :
m∑
j=1

d?j =
n∑
i=1

p?i

Rational behaviour of market players (max its own benefits)

Supplier’s local minimizations

p?1 = argminp1∈P1 C1(p1)− λp1

p?2 = argminp2∈P2 C2(p2)− λp2

...
p?n = argminpn∈Pn

Cn(pn)− λpn

Demand’s local minimizations

d?1 = argmind1∈D1 λd1 −B1(d1)
d?2 = argmind2∈D2 λd2 −B1(d2)

...
d?m = argmindm∈Dm

λdm −B1(dm)

λ∗ which solves the above problem is the (market clearing) price
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blue curves - BIDS: βi(pi), βi(di) → incremental costs (in perfect competition)



blue curves - BIDS: βi(pi), βi(di) → incremental costs (in perfect competition)



Market-based operation (STATIC)

Benefits of market-based (price-based) operation
In mathematical terms we reached (via dual) the same solution (as primal).
Why deregulation? new solution architecture: new players (market operators,
competing parties),definition of who does what, prices and bids as protocols for
coordination

“invisible hand of market” (Solution architecture matters)
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Congestion management (STATIC)

Congestion management

Line flow limits:
physical: thermal limits, stability limits
contingency limits (robustness): physical limits following contingency

Congestion is a problem on more time-scales (day-ahead, real-time).
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Congestion management (STATIC)

Power flow equations (DC approximation)

Nodal power injections:
pi < 0 consumption,
pi > 0 production

DC line power flow model:
pij = bij(θi − θj) = −pji
bij = susceptance of line
θi = voltage phase angle


p1
p2
...
pn

 =


bN1 −b12 . . . −b1n
−b12 bN2 . . . −b2n
...

...
. . .

...
−b1n −b2n . . . bNn



θ1
θ2
...
θn


with bNi :=

∑
j∈Ni

bij

Power flow equations

p = Bθ

Remark: B> = B, B1n = 0.

Line flow limits

Lθ ≤ eE
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Congestion management (STATIC)

Optimal power flow problem

pi = node aggregated controllable power injection with assigned economic
objective function Ji(pi):

pi < 0, net consumption, Ji(pi) = −Bi(pi)
pi > 0, net production, Ji(pi) = Ci(pi)

qi = uncontrollable, price inelastic, nodal power injection (net consumption:
qi < 0, net production : qi > 0).

Optimal power flow problem (OPF)

min
p,θ

n∑
i=1

Ji(pi)

subject to p+ q −Bθ = 0
p ≤ p ≤ p
Lθ ≤ eE
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Congestion management (STATIC)

Nodal pricing
KKT conditions (after “including back” the limits {p

i
, pi} into the bids βi(pi))

OPF problem

min
p,θ

n∑
i=1

Ji(pi)

subject to p−Bθ = 0
p ≤ p ≤ p
Lθ ≤ eE

KKT conditions

β(p?)− λ? = 0
p? −Bθ? = 0

Bλ? + L>µ? = 0
0 ≤ (−Lθ? + eE) ⊥ µ? ≥ 0

Singe price in case of no congestion

−Lθ? + eE < 0 =⇒ µ? = 0 =⇒ Bλ? = 0 =⇒ λ? = 1nλ̂, λ̂ ∈ R

In case of singe congested line, optimal nodal price in general have different value
for each node. (Bλ? = −L>µ?)
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Congestion management (STATIC)

Nodal pricing
Example
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Market-based robust spatial distribution of ancillary services (STATIC +
DYNAMIC)

Spatial allocation of reserves (balancing ancillary services)

Allocation of cheaper reserves (NODE 1) behind congested lines cannot cover for
uncertain fluctuations in NODE 2.
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RELIABILITY MARGIN 
Economically optimal working point is often on the 

border of feasible region 

Size of reliability margin: reliability vs. efficiency trade-off 

In current system, reliability 

is accounted for in 

“aggregated” form here 



Market-based robust spatial distribution of ancillary services (STATIC +
DYNAMIC)

Problem definition
Robust congestion constraints

The participation function - a priory fixed structure (more options make sense),
parameters are gains in secondary control loops

f(t) = γ(ã+(k), ã−(k), q(t))
ã+(k) = purchased and allocated up-regulating AS
ã−(k) = purchased and allocated down-regulating AS
ã+(k) and ã−(k) are vectors defining spatial distribution of AS

Uncertainty model
q(t) ∈ Q̃(k) = { q | q = R̃(k)w, w ∈ W̃(k) ⊂ Rm}

W̃(k) = conv{w̃1(k), . . . , w̃T (k)}, 0 ∈ W̃(k)

Robust congestion constraints

Lδ ≤ ∆l̃(k) for all δ ∈ D̃(k) where

D̃(k) := {δ | R̃(k)w + γ
(
ã+(k), ã−(k), R̃(k)w

)
= Bδ,

w ∈ W̃(k) }
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14 

Get reliability for best costs 

Spatial distribution of AS:  

Shaping the “uncertainty tube” 

Possible to include optimal 

cooperation between control 

areas 



15 Review Meeting - May 24, 2012 



Optimized uncertainty in line power flows 

18 

Line 8 



19 
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Closed loop price-based operation (DYNAMIC) Optimization as feedback controller

Optimization as feedback controller

System

Controller

Optimization

−

w

estimate w

Increased uncertainties & fluctuations →
inefficient and infeasible to separate
optimization and control
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Closed loop price-based operation (DYNAMIC) Optimization as feedback controller

Optimization as feedback controller

System

Controller

Optimization

−

w

estimate w

System

Controller

Optimization

−

w
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Closed loop price-based operation (DYNAMIC) Optimization as feedback controller

Theory literature inspired by power systems
survey slide by Florian Dorfler, ETH Zurich
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Closed loop price-based operation (DYNAMIC) Optimization as feedback controller

Optimization in the loop (KKT controller)

Optimization
(open (inputs/outputs), real-time,

feedback interconneted)

ẋ = f(x,w, u)
y = g(x,w)

w

y u

Desired steady-state
min
y

J(y)

subject to Ly = h(w)
g(y) ≤ r(w)
w ∈ W
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Closed loop price-based operation (DYNAMIC) Optimization as feedback controller

Optimization in the loop (KKT controller)

ẋλ = Kλ( Ly − h(w) )

ẋµ = Lµ( g(y)− r(w) ) + v

ẋc = (L>xλ +∇g(y) +∇J(y))

0 ≤ v ⊥ K0xµ +Kµ( g(y)− r(w) ) + v ≥ 0

u = xc

ẋ = f(x,w, u)
y = g(x,w)

w

y u

Desired steady-state
min
y

J(y)

subject to Ly = h(w)
g(y) ≤ r(w)
w ∈ W
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Closed loop price-based operation (DYNAMIC) Optimization as feedback controller

Optimization in the loop (KKT controller)

ẋλ = Kλ( Ly − h(w) )

ẋµ = Lµ( g(y)− r(w) ) + v

ẋc = (L>xλ +∇g(y) +∇J(y))

0 ≤ v ⊥ K0xµ +Kµ( g(y)− r(w) ) + v ≥ 0

u = xc

ẋ = f(x,w, u)
y = g(x,w)

w

y u

Desired steady-state
min
y

J(y)

subject to Ly = h(w)
g(y) ≤ r(w)
w ∈ W

KKT conditions

∇J(y) + L>λ+∇g(y)µ = 0
Ly − h(w) = 0

0 ≤ −g(y) + r(w) ⊥ µ ≥ 0
buit into cl.-loop stead.stat.sys.
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Closed loop price-based operation (DYNAMIC) Optimization as feedback controller

INTERMEZZO: complementarity systems

Complementarity system

ẋ = f(x,w)
z = h(x,w)
0 ≤ z ⊥ w ≥ 0

0 ≤ z ⊥ w ≥ 0 is compact from for z ≥ 0, w ≥ 0, z>w = 0

CS structure → rich theory (van der Schaft, Schumacher, Heemels, Camlibel,
Brogliato, ...)
Suitable framework for many applications (physics, optimization, economy),
e.g.: constrained mech. systems, elect. circuits, optimal control, oligopolistic
markets, Leontiev economy, ...
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Closed loop price-based operation (DYNAMIC) Optimization as feedback controller

Toy example

System(
ẋ1
ẋ2
ẋ3

)
=

(−2.5 0 −5
0 −5 −15

0.1 0.1 −0.2

)(
x1
x2
x3

)
+

( 0
0
−0.1

)
w +

(2.5 0
0 5
0 0

)(
u1
u2

)
(
y1
y2
y3

)
︸ ︷︷ ︸

y

=

(1 0 0
0 1 0
0 0 1

)(
x1
x2
x3

)

Optimal working point

min
y

(
y1
y2

)>(
3 0
0 1

)(
y1
y2

)
+
(
−4 −4

)(y1
y2

)
subject to y1 + y2 = w

(y1 − 4.7)2 + (y2 − 4)2 ≤ 3.52

for w ∈ [4, 11.5]

Observe
0.1y1+0.1y2−0.3y3 =
0.1w
in steady state
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Closed loop price-based operation (DYNAMIC) Optimization as feedback controller

Toy example

System(
ẋ1
ẋ2
ẋ3

)
=

(−2.5 0 −5
0 −5 −15

0.1 0.1 −0.2

)(
x1
x2
x3

)
+

( 0
0
−0.1

)
w +

(2.5 0
0 5
0 0

)(
u1
u2

)
(
y1
y2
y3

)
︸ ︷︷ ︸

y

=

(1 0 0
0 1 0
0 0 1

)(
x1
x2
x3

)

The controller
ẋλ = Kλ x3,

ẋµ = Kµ((x1 − 4.7)2 + (x2 − 4)2 − 3.52 + v),

ẋc = Kc

((
1
1

)
xλ +

(
2x1 − 9.4
2x2 − 8

)
xµ +

(
6 0
0 2

)(
x1
x2

)
+
(
−4
−4

))
,

0 ≤ v ⊥ (Koxµ + (x1 − 4.7)2 + (x2 − 4)2 − 3.52 + v) ≥ 0,
u = xc,
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Closed loop price-based operation (DYNAMIC) Price-based control of power systems

Distributed, real-time, price-based control of power sys.
∆pL = Lδ − ec
Nodal pricing controller(

ẋλ
ẋµ

)
=
(
−KλB −KλL

>

0 0

)(
xλ
xµ

)
+
(
−Kf 0

0 Kp

)(
∆f

∆pL + w

)
,

0 ≤ w ⊥ Koxµ + ∆pL + w ≥ 0,

λ =
(
In 0

)(xλ
xµ

)
,

p−Bδ + p̂= 0, (global)

Bλ+ L>µ= 0,
∇J(p)− λ+ ν+ − ν−= 0, (local)

0 ≤ (−Lδ + ec) ⊥ µ ≥ 0,
0 ≤ (−p+ p) ⊥ ν+ ≥ 0,

0 ≤ (p+ p) ⊥ ν− ≥ 0

why does it work?

Bλ+ L>µ+ ∆f?1 = 0,

1>
(
B L>

)
= 0 =⇒ 1 /∈ Im

(
B L>

)
,

=⇒ ∆f = 0, Bλ+ L>µ = 0
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Closed loop price-based operation (DYNAMIC) Price-based control of power systems

Distributed, real-time, price-based control of power sys.

∆pL = Lδ − ec

Nodal pricing controller

(
ẋλ
ẋµ

)
=
(
−KλB −KλL

>

0 0

)(
xλ
xµ

)
+
(
−Kf 0

0 Kp

)(
∆f

∆pL + w

)
,

0 ≤ w ⊥ Koxµ + ∆pL + w ≥ 0,

λ =
(
In 0

)(xλ
xµ

)
,

no knowledge of cost/benefit functions of producers/consumers required
required no knowledge of actual power injections (FEEDBACK!)
required: B and L
preserves the structure of B and L
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Closed loop price-based operation (DYNAMIC) Price-based control of power systems

Distributed, real-time, price-based control of power sys.
∆pL = Lδ − ec
Nodal pricing controller

(
ẋλ
ẋµ

)
=
(
−KλB −KλL

>

0 0

)(
xλ
xµ

)
+
(
−Kf 0

0 Kp

)(
∆f

∆pL + w

)
,

0 ≤ w ⊥ Koxµ + ∆pL + w ≥ 0,

λ =
(
In 0

)(xλ
xµ

)
,

max-based complementarity integrator
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Closed loop price-based operation (DYNAMIC) Price-based control of power systems

Distributed, real-time, price-based control

Bλ+L>µ = 0, λ prices for local balance, µ prices for not overloanding the lines


b12,13 −b12 −b13 0
−b12 b12,23 −b23 0
−b13 −b23 b13,23,34 −b34

0 0 −b34 b34

∣∣∣∣∣∣∣∣
b12 b13
−b12 0

0 −b13
0 0




λ1
λ2
λ3
λ4
µ12
µ13

 = 0,
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Closed loop price-based operation (DYNAMIC) Price-based control of power systems

Distributed, real-time, price-based control

Bλ+ L>µ = 0
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Closed loop price-based operation (DYNAMIC) Price-based control of power systems

Distributed, real-time, price-based control

Optimality conditions

β(p?)− λ? = 0
p? −Bθ? = 0

Bλ? + L>µ? = 0
0 ≤ (−Lθ? + eE) ⊥ µ? ≥ 0

Real-time nodal price based SC controller (each control area balanced separately)

(
ẋλ
ẋµ
ẋσ

)
=

(−KλB −KλL
> 0

0 0 0
0 0 0

)(
xλ
xµ
xσ

)
+

( 0 0
0 Kµ

−Kσ 0

)(
ACE
∆pC

)
+

( 0
Kµw

0

)
,

0 ≤ w ⊥ K0xµ + ∆pC + w ≥ 0,

λ =
(
I 0 E

)(xλ
xµ
xσ

)
, ∆p = Υ̃(λ)
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Closed loop price-based operation (DYNAMIC) Price-based control of power systems

Distributed, real-time, price-based control

Optimality conditions

β(p?)− λ? = 0
p? −Bθ? = 0

Bλ? + L>µ? = 0
0 ≤ (−Lθ? + eE) ⊥ µ? ≥ 0

Real-time nodal price based SC controller (each control area balanced separately)

(
ẋλ
ẋµ
ẋσ

)
=

(−KλB −KλL
> 0

0 0 0
0 0 0

)(
xλ
xµ
xσ

)
+

( 0 0
0 Kµ

−Kσ 0

)(
ACE
∆pC

)
+

( 0
Kµw

0

)
,

0 ≤ w ⊥ K0xµ + ∆pC + w ≥ 0,

λ =
(
I 0 E

)(xλ
xµ
xσ

)
, ∆p = Υ̃(λ)
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Closed loop price-based operation (DYNAMIC) Price-based control of power systems

Distributed, real-time, price-based control

Optimality conditions

β(p?)− λ? = 0
p? −Bθ? = 0

Bλ? + L>µ? = 0
0 ≤ (−Lθ? + eE) ⊥ µ? ≥ 0

Real-time zonal price based SC controller (each control area balanced separately)

(
ẋλ
ẋµ
ẋσ

)
=

(−KλB −KλL
> 0

0 0 0
0 0 0

)(
xλ
xµ
xσ

)
+

( 0 0
0 Kµ

−Kσ 0

)(
ACE
∆pC

)
+

( 0
Kµw

0

)
0 ≤ w ⊥ K0xµ + ∆pC + w ≥ 0

λZ =
(
F (·) 0 E

)(xλ
xµ
xσ

)
, ∆p = Υ(λZ)
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Closed loop price-based operation (DYNAMIC) Price-based control of power systems

Distributed, real-time, price-based control

Optimality conditions

β(p?)− λ? = 0
p? −Bθ? = 0

Bλ? + L>µ? = 0
0 ≤ (−Lθ? + eE) ⊥ µ? ≥ 0

Real-time zonal price based SC controller (each control area balanced separately)

(
ẋλ
ẋµ
ẋσ

)
=

(−KλB −KλL
> 0

0 0 0
0 0 0

)(
xλ
xµ
xσ

)
+

( 0 0
0 Kµ

−Kσ 0

)(
ACE
∆pC

)
+

( 0
Kµw

0

)
0 ≤ w ⊥ K0xµ + ∆pC + w ≥ 0

λZ =
(
F (·) 0 E

)(xλ
xµ
xσ

)
, ∆p = Υ(λZ)
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Closed loop price-based operation (DYNAMIC) Price-based control of power systems

Distributed, real-time, price-based congestion control
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Conclusions

Conclusions and messages

“smart? = hidden + invisible”
make it work → make it big → make it sustainable (massive automation)
extremly complex system (many NP-hard problems, large-scale,...) - yet it
works very robustly
Today’s robustness (work + big): physics on our side + partly due to
conservative engineering
Future: changes in physical layer + smart? (massive automation) →
increased complexity. Robustness (fragility?), efficiency, scalability?
think in terms of: arhiteicture (layering), modules and protocols
Optimization (duality!): holistic approach to market (and control)
Huge area for important research (exciting parallel research in control systems
field)
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Conclusions

UNIJE (smart island Unije): sustainable island

http://insulae-h2020.eu/ https://insulae.wp.fsb.hr/
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