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We consider vibrational system

C(g)=damping part
M(t) + (Cint + B2GB3 ) 4(t) + Kq(t) = Eyw(t),
y(t) = Hiq(t).
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We consider vibrational system

C(g)=damping part
M(t) + (Cint + B2GB3 ) 4(t) + Kq(t) = Eyw(t),
y(t) = Hiq(t).
e M, K € R™™ mass and stiffness, the symmetric and positive
definite
® ¢ € R™ state vector and y is output vector determined by
H, € Rt*n,
® [y € R™ ™ determines primary excitation matrix and vector

w € R™ corresponds to primary excitation input.
® Cine € R™ ™ internal damping e.g. Cint = @eClerit, Where

Clorit = 2M2/ M-12KM-1/2 M2,
e G = diag(g1,92,---,9%), gi > 0 damping coefficients.
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Example: n-mass oscillator or oscillator ladder
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. . Problem formulation
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Example: n-mass oscillator or oscillator ladder

&
M = diag(mi,ma,...,my), C(g) = acCui + BQGBQT,

ByGBI = gi(e; — eir1)(ei — eir1)’ + gale; —eji1)(ej — ej+1)”

k1 + ko —ko
—ko kot ks —ks

_kn—l kn—l + kn _kn
7kn kn + kn-{-l
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The principal goal is to determine an optimal damping matrix that will
minimize the influence of the input w (viewed as a disturbance) on the
output, v.
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. . Problem formulation
Parametric model reduction
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The principal goal is to determine an optimal damping matrix that will
minimize the influence of the input w (viewed as a disturbance) on the
output, v.

(M, K)
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Introduction

. . Problem formulation
Parametric model reduction
Numerical experiments

The principal goal is to determine an optimal damping matrix that will
minimize the influence of the input w (viewed as a disturbance) on the
output, v.

(M, K) (M, K, D)
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Linearization
With the substitutions 1 (t) := q(t), z2(t) := ¢(t) and z := 5} ] we
obtain a first-order representation of the closed-loop system

—— —_— -
[IS AOA ) = [_OK _é’;g)] x(t) + [ EO] w(t),
y(t) = [Hi 0] z(t)
C

Using the Laplace transform we obtain the closed-loop transfer function
-1
H(g,s) = Hy (s°M +sC(9) + K) B>

—m o ([5 a-[S “&l) L2
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Ho norm of a system
Define the space

H ™ = {H :CT — ctm ‘ H is analyticin C* and

/m o (I (iw) (i) dow < oo} ,

—0o0

1H(g, )y, = ( ! /+OO tr (H(g,iuJ)*H(g,iw))dw);.

21 J o

It can be expressed via the solution of a Lyapunov equation, i.e.

1
1 2
IH(g, )||7.[2 = (27r tr BTPB) , Wwhere ATpipAa=_CcTcC

[T./Beattie/Gugercin18, Benner/Kurschner/T./Truhar16]

Zoran Tomljanovi¢ Damping optimization in mechanical systems using parametric model reduction




Introduction
Parametric model reduction . A o

. . Overview of optimization criteria
Numerical experiments

Hoo norm of a system !
Define the space

HE™ = {H : Ct — C™™ | His analyticin C™ and sup [|H(s)||, < OO}
seCt

IH(g, 3., = suprec+ [H(g, Ml = supyeg [H(g, iw)]], -

'[T./Voigt20]
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Hoo norm of a system !
Define the space

HE™ = {H : Ct — C™™ | His analyticin C™ and sup [|H(s)||, < OO}
seCt

IH(g, 3., = suprec+ [H(g, Ml = supyeg [H(g, iw)]], -

One can also consider certain mixed performance measures:

* B9 )M aee
® criterion that combines ||H(g, -)||,, and total average energy ?

2[Naki¢/T./Truhar19]
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. . Overview of optimization criteria
Numerical experiments

Main drawback of direct methods

Damping optimization (position and viscosity optimization):
In the n-mass oscillator:

Cent = g(e;i — €iv1)(ei — €i11)" + glej — ej1)(ej — ej41)7,

there is a problem with determining optimal (i, 7), 1 <i < j <nand g.

Zoran Tomljanovi¢ Damping optimization in mechanical systems using parametric model reduction



Introduction
Parametric model reduction . N -

. . Overview of optimization criteria
Numerical experiments

Main drawback of direct methods

Damping optimization (position and viscosity optimization):
In the n-mass oscillator:

Ceat = g(ei — eir1)(ei — ei1)” +g(ej — ej41)(ej — €j41)7,
there is a problem with determining optimal (i, 7), 1 <i < j <nand g.
For example if n = 1000:

discrete optimization over 500 000 different damping positions.

Efficient overall algorithm for optimization of damping positions is still
needed !

~+  for determination of the optimal position and viscosity we need to
evaluate objective function 10 000 000 times.
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Consider a parametric LTI dynamical systems represented as

where E, A(p) € R™", B € R"™™ and C' € R*™,
® z(t;p) € R™ denotes the state variable

e u(t) € R™and y(t;p) € R! represent the inputs and outputs of the
system, resp.

We will denote this system with [ E, A(p), B, C'].
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For parameter p we can approximate our system with reduced system 1

E.x, (t;p) = Ar(p)xr(t;p) + Bru(t;p)7
yr(tQp) = Crxr(t§p)7

where matrices V. € R™*" and W,. € R™*" determine reduced system

E,=W.)"EV,, A, =W, AV,
BT:(WT)TB and C, =CV,.

For set of sampling parameters pl, ..., p° one can calculate truncation
matrices and for global basis we can construct truncation matrices by
V=V . Vi]and W = [W} ... W2

Problem: reduced order model depends on sampling parameters, but also
which sampling one should use .

1[Benner/Cohen/Otherger/WiIIcox2017], [Benner/Gugercin/Willcox2015],
[Quarteroni/Manzoni/Negri2016], [Quarteroni/Rozza/Manzoni2011]
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We would like to remove the need for parametric sampling, which requires
identifying particular parameters of interest!
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We would like to remove the need for parametric sampling, which requires
identifying particular parameters of interest!

We consider system where A(p) depends on k < n parameters

p = (p1,Dp2,- - ., Pk) such that we may write

k
A(p) = Ao+ U diag(p, pa, -, pe)V" = Ao+ Y piiivy,
=1

where U,V € R™*F are fixed.
Full-order transfer function

H(s;p) = C(sE — A(p))™'B.

Aim: to produce a ROM that retains the structure of parametric
dependence and offers uniformly high fidelity across the full parameter
range.
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Structure in damping example.

[q" ¢"]" we obtain:

By defining the state-vector x =
o 0= awa0+ | g [w,
z(t)=[ Hi 0 ]x(t), where

0 I 0 .
A(p) = [ K —Cy ] + [ BQ}dlag(pl,pQ,...,pk)[O BQT}

Further extensions to the cases with higher rank.

E.g. A(p) = Ag+p1A1+p2As whereboth Ay, As have rank-2.
Then, one can write Ay = [u1 ug][vy vo]” and As = [ug u4)[vz v4] 7.
With U = [ug ug uz ug] and V' = [v1 v v3 v4] we obtain

A(p) = Ao + p1A1 + p2As = Ag + U diag(p1, p1,p2, p2)V7'.
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The key observation!
~ -1 ~
H(s;p) =C (A(s) — U diag(p1,p2,. - ,pk)VT) B, A(s) = sE — A,.
We use the Sherman-Morrison-Woodbury formula.
H(s; p) = Hi(s) — Ha(s)D(p) (I + D(p)H3(s)D(p)) " D(p)Ha(s),

where parameters are encoded in diagonal matrix

D(p) = diag(y/P;» /Py - - - »/P;,) and
H,(s) = CA(s) !B, H,(s) = CA(s)~'U,
Hs(s) = VT A(s)'U, Hy(s) = VT A(s)'B.
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. Basic structure
Introduction
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The key observation!
H(s;p) =C (K(s) — U diag(p1,p2,. - ,pk)VT)_1 B, E(s) =sE — Ag.
We use the Sherman-Morrison-Woodbury formula.
H(s; p) = Hi(s) — Ha(s)D(p) (I + D(p)Hs(s)D(p)) " D(p)Ha(s),
where parameters are encoded in diagonal matrix
D(p) = diag(\/ﬁl, Py \/f)k) and
H,(s) = CA(s) !B, H,(s) = CA(s)~'U,
Hs(s) = VT A(s)'U, Hy(s) = VT A(s)"'B.

We construct a parameterized reduced order model by using four
subsystems which do not depend on parameters:

[E,Ao,B,C], [EvA()an VT]a [E7A07U7C]> and[E,AO,B,VT].
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Approach 1: Reduced model based on vector fitting approach

Offline steps
® For the predetermined points in the complex plane &1, ..., &N
calculate

Hl(fi), H2(€1), Hg(fl), H4(§1) for 1= 1, ey N.
These samples do not depend on parameters!
Online steps
® For any given parameter p = (p1, p2, . . ., pi) calculate H(;; p) for
1 =1,..., N using obtained formula.
e Based on H(&1;p), ..., H({n; p) obtain reduced system with
transfer function ﬁ(s; p) using vector fitting approach.
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Approach 1: Reduced model based on vector fitting approach

Offline steps
® For the predetermined points in the complex plane &1, ..., &N
calculate
Hl(fi), H2(€1), Hg(fl), H4(§1) for 1= 1, ey N.
These samples do not depend on parameters!
Online steps
® For any given parameter p = (p1, p2, . . ., pi) calculate H(;; p) for
1 =1,..., N using obtained formula.
e Based on H(&1;p), ..., H({n; p) obtain reduced system with
transfer function ﬁ(s; p) using vector fitting approach.
The quality of approximations is determined by

~ N ~ 2 N
e(H(:p)), H:p)) = Y [H(&isp) — Higip)|| / > IHEs DI
i=1 i=1
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Approach 2: ROM based on reduction of subsystems

Offline steps
® For underlaying subsystems calculate reduced systems using model
reduction techniques for non-parametric systems

[E, Ay, B,C] — ﬁl(s), using order 771;
[E, Ay, U, V1]
[E, Ay, U, C']
[E,AO,B,VT] — fI4( , using order 74;

— Hbo(s), using order r3;

s)
— ﬁg(s), using order 73;
s)

e.g. using balanced truncation or IRKA approach.
Online steps
® For any given parameter p = (p1, p2, . - . , Pk ) Obtain approximated
system H(s; p) by

H(s; p) ~ Hi(s) — Ha(s)D(p)(I + D(p)Hs(s)D(p)) "' D(p)Ha(s)
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Uniform stability of the parameterized reduced model

Theorem

Suppose that the full parameterized model H(s, p) has been decomposed
into subsystems H (s), Ha(s), and Hy(s) that are each asymptotically
stable, and a subsystem Hi(s) that is positive real. If the corresponding
reduced subsystems H (s), Ha(s), and Ha(s) retain asymptotic
stability, and Hs (s) retains positive-reainess, then the reduced
parameterized model H(s, p) in

~

H(s; p) = Hi(s) — Ha(s)D(p)(I + D(p)Hs(s) D(p)) "' D(p)Ha(s).

is uniformly asymptotically stable for nonnegative parameters encoded in
p.
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Error bound

In order to calculate error bound we consider full order transfer function
H(s; p) = Hi(s) — Ha(s)D(p) (I + D(p)Hs(s)D(p)) ™ D(p)Ha(s),
and corresponding reduced order transfer function

H(s;p) = Hi(s) — Ha(s)D(p)(I1 + D(p)Hs(s)D(p)) "' D(p)Ha(s),

we would like to have upper bound for the error

IH(sp) —H(;p)l| < 7

Zoran Tomljanovi¢ Damping optimization in mechanical systems using parametric model reduction
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Error bound

Error bound

It can be shown that

H(;p) — H(;p) = [Hy — Hi] + [HQ—HQDp (I + D) HsD(p)) ' D(p)Ha+
+H2D(p)(I + D(p)HsD(p)) ™' D(p)[Ha — Hal+

+H2D(p)(I + D(p)HsD(p)) ™ D(p)[Hs — Hs]D(p) (I + D(p)HsD(p))~

1

D(p)ﬁ4
Thus, we have

IH(:;p) — H(;p)l| < |Hy — Hyll + [|Ha — Ha ||| D(p) (I + D(p)Hs D(p)) " D(p)Ha |+
+|H2D(p) (I + D(p)H3D(p)) ™' D(p)[Hs — Hal||+
+|[HaD(p) (I + D(p)HzD(p)) " D(p)|l||Hs — ||| D(p) (I + D(p)HsD(p)) " D(p)Ha]
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Error bound
It can be shown that
H(3p) - H(;p) = [y — F] + [ — Hua] D) (I + Dp)H: D(p))” "D(p)Ha+
+H2D(p)(I + D(p)HsD(p)) ™' D(p)[Ha — Hal+
+H2D(p) (I + D(p)HsD(p)) " D(p)[Hs — Hs] D(p) (I + D(p)HsD(p)) " D(p)Hs

Thus, we have

IH(:p) — H(;p)l| S |H1 — Hy|| + |Hz — Ha ||| D(p) (I + D(p)H3D(p)) " D(p)Ha |+
+|H2D(p) (I + D(p)HsD(p)) ™ D(p)||[|[Hs — Ha] ||+
+|[H2D(p) (I + D(p)H3D(p)) ™" D(p)||||H3 — 3| D(p) (I + D(p)HzD(p)) " D(p)Ha||
Which means that we have a bound in terms of
f(p)

IH(-5p) — H(5p)|l S €1 + e2fi1(p, Hs, Ha) + e4 f2(p, Ha, Hs) + €3 f3(p, Hz, Hg, Hy)

Zoran Tomljanovi¢ Damping optimization in mechanical systems using parametric model reduction



Introduction

Parametric model reduction

Numerical experiments PR
p Parameter optimization

Surrogate optimization with reduced parametric models

A major cost in parameter optimization is the repeated evaluation of the
Ho norm.

We can use the approach 1 or 2 to accelerate computational cost, so we
solve a surrogate optimization problem

-
D argglelélH (-,p)

Ha ’

where the reduced parametric transfer function ﬁ(, p) will be constructed
using either approach 1 or approach 2, without need for parameter
sampling.

Zoran Tomljanovi¢ Damping optimization in mechanical systems using parametric model reduction



Introduction

Parametric model reduction

Numerical experiments PR
p Parameter optimization

Surrogate optimization with reduced parametric models

A major cost in parameter optimization is the repeated evaluation of the
Ho norm.

We can use the approach 1 or 2 to accelerate computational cost, so we
solve a surrogate optimization problem

* . ﬁ . H
p argr}}lglg” (-,p)

Ha ’

where the reduced parametric transfer function ﬁ(, p) will be constructed
using either approach 1 or approach 2, without need for parameter
sampling.

Assume p* is the minimizer and note that
PG )y < ||HC,p7) = BCp0)|| o+ G|
Ha Ha

The surrogate optimization problem will minimize the second term.
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Parametric model reduction

Numerical experiments PR
p Parameter optimization

Parameter optimization using reduced models via approach 1

1: Choose the reduced order so that e(p") < 7.
2: Solve the surrogate optimization problem

p* = argmin Hﬁ(,p)H
P Ha
with the initial guess p° and VF approach for ﬁp, using {H;(&)}Y,.
3: while minimizer p* such that e(p*) > 7 do
4 pP=p*
5:  Increase the reduced order so that e(p*) < 7.
6 Determine the new minimizer by solving the

~

pr= argminHH(',p)H
p Ha

using the updated ﬁ the initial guess po, and tolerance v.
7: end while
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Parametric model reduction

Numerical experiments PR
p Parameter optimization

Parameter optimization using reduced models via approach 2

1: Choose the reAduced orders 11,72, 73, T4 (@and ﬁl, ﬁg, ﬁg, ﬁ4) so that
F®°) <7 IH(E ) 3
2: Solve the surrogate optimization problem

p* = argmin HITI(,p)H
4 Ho

with the initial guess p° and tolerance v.

3: while minimizer p* such that f(p*) > 7 ||IA{(~,Z9O)||7-L2 do
4 pd=p*
5. Increase the orders 1y, ro, 73, 14 st f(P*) < T ||fI(~,p0)HH2.
6: Determine the new minimizer by solving the

p* = argmin,, HI/-\I(,p)H

~ Hz

using the updated H, the initial guess po, and tolerance v.

7: end while
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We consider example from [Penzl 1999]. The full-order system is known
and defined by state-space matrices

A = diag(Ai1(p1), A2(p2), A3(ps), —1,—2,...,—N)

Al(pz):[__pll fﬂ, for i=1,...,3

Matrix C' € R1*N+6) where

{10, i=1,...,6,
“=11, i=7,...,N.

B = C7T and number of states N = 100. The parameters p1, p2, p3
represent the imaginary part of the two eigenvalues of the diagonal block
A;(p;), respectively. Here we use that po = 5p; and p3 = 20p;.

We illustrate approach based on balanced truncation of subsystems where
four underlaying subsystems were reduced to dimensions 10, 1, 6, 1.
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p=(1.00, 5.00, 20.00)

1] = FOM | |
10 === ROM

1072 1071 100 10t 102 103 104 10°

magnitude

—
3
—

frequency
]_0_6 LB e 1 B 1 B B P e e 2 e e
’ - relative error ‘
10791 g
—12 Lol Lol Lol Lol Lol Lol Lol
10~ 107t 10 10t 102 10®* 10*  10°
frequency

Zoran Tomljanovi¢ Damping optimization in mechanical systems using parametric model reduction




Introduction Penzl example
Parametric model reduction
Numerical experiments

p=(1.00, 5.00, 20.00)

102 ' : :
102 10° 102 10*

10'6 T T T

relative error

108

.10-10 - il

10—12 L L L
1072 10° 102 10*
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We consider thermal conduction in a semiconductor chip from
Oberwolfach Benchmark Collection.
The full-order system is:

Ei = (A — piAr — ppAp — psAs)x + Bu

y = Cz, where

E € RA257X425T corresponds to heat capacity and A to heat

conductivity matrix
B € RY*4257 ig the load vector and C' € R7*4257

Ay, Ay and A, are the diagonal matrices from the discretization of
the convection boundary conditions with ranks 111, 99 and 31, resp.

® Parameters p¢, py, ps represent film coefficients.
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Numerical experiments Damping example

We fix p; = 1000 and vary both pj, and p, between 1 and 10°.
Reduced dim. of subsystems: r; = 46,92 = 66, r3 = 200,r4 = 16.

(Gl

GO

IH(p)—

Ps
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By ome Moan
.......... %
/]
/] Mgt Mgy Mg #
/ .
ks ks
P
The mass and the stiffness matrix are given by
2 -1
K —K1 -1 2 -~
K = Koo —K2 , Ko = ks ,
—k{  —k3 ki+ko+ks 1 2 -1

K,Z':[O ... 0 ki]forz':1,2andM:diag(m1,m2,...

Zoran Tomljanovi¢
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d = 900 = n = 1801, with m1g91 = 1000 and

1000 — £, i=1,...,450,
m; =4 i+325, i=451,...,900,
1300 — &, §=901,...,n.

The stiffness values are given by
k1 = 500, ke = 200, k3 = 300.

The primary excitation are 5 disturbances applied to the 4 masses closest
to the left-hand side and one mass closest to the right-hand side of
oscillator.

We are interested in 2 displacements, i. e.

Z(t;p) = [q400(t;p) qlgoo(t;p)]T .

Zoran Tomljanovi¢ Damping optimization in mechanical systems using parametric model reduction
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Internal damping is a small multiple of critical damping

1/2

Cint = 0.04 - M/ (M*l/ZKM71/2> M2

We consider four dampers with gains p1, p2, p3 and p4 where geometry of
positions is given by

By = [ejl — €514+105 €jay €53, Cjz — €j3+100] )

with j1 € {100, 300, 500, 700}, jo € {150, 350, 550, 750},
js € {1400, 1700} = 32 different damping configurations at which
|| - |7, norm was minimized.

Gains were optimized with starting point p° = (100, 100, 100, 100) using
the full-order model and using proposed reduced systems.
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In the approach based on balanced truncation of subsystems:
® in all damping configurations, starting reduced dimensions of four
subsystems were 280, 300, 480, 430, resp.
In the approach based on vector fitting approach
® initial points &;,7 =1,..., N, for N = 500 depending on modally
damped system.
® 130 initial poles (chosen using from dominant poles).

The stoping tolerance for parameter optimization was 0.005.

Zoran Tomljanovi¢ Damping optimization in mechanical systems using parametric model reduction
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In the approach based on balanced truncation of subsystems:
® in all damping configurations, starting reduced dimensions of four
subsystems were 280, 300, 480, 430, resp.
In the approach based on vector fitting approach
® initial points &;,7 =1,..., N, for N = 500 depending on modally
damped system.
® 130 initial poles (chosen using from dominant poles).

The stoping tolerance for parameter optimization was 0.005.
Time ratio

In average case for one optimization of parameters, new approach was
faster:
® =3 7.8 times, with usage of reduced model based on balanced
truncation of subsystems,
® =~ 60 times, with usage of reduced model based on vector fitting
approach.

Zoran Tomljanovi¢ Damping optimization in mechanical systems using parametric model reduction




Introduction
Parametric model reduction

Numerical experiments Damping example
10725 ] ] ] E
= =] 0 =] e
|- D -
-3L g |
107 =
= o =] .|
2| P —— > g o8 Hoy >
= _4 > O O o
107 E o o o o
8 F o »2 5 g =" > O g
= = F o ]
(m = [ > > -
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Conclusion :

® We have introduced a framework for producing reduced order models
of dynamical systems having an affine, low-rank parametric structure.

® Approach 1: Reduced model based on vector fitting approach.
® Approach 2: ROM based on reduction of subsystems.
® The new framework does not require any sampling in the parameter
domain and instead parametrically combines intermediate
subsystems that are nonparametric.

® Can guarantee uniform stability of the aggregated reduced model
across the entire parameter domain in many cases.

® These approaches can be deployed efficiently in parameter
optimization problems as well.
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