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Motivation: source reconstruction–scalar case

Inverse problem

Inverse Problem (scalar case)

To establish uniqueness, stability and reconstruction of a heat source f(x, t)
ut −∆u = f(x, t) in Ω× (0, T )

u(0) = 0 in Ω

u = 0 on Γ× (0, T )

from partial data related to u: boundary values (the flux ∂u/∂n on Γ0 ⊂ ∂Ω) or
internal values (u restricted to O ⊂ Ω).

Non uniqueness: u = a(t)φ(x), φ ∈ C∞(Ω), suppφ ∩ O = ∅, then
ut −∆u = a′φ− a∆φ = f with supp f(·, t) ∩ O = ∅ for each t, so zero
measurements in ω.
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Motivation: source reconstruction–scalar case

Some special cases with uniqueness (a priori knowledge)

Structural identification : f = f(u)
Reaction-diffussion (Cannon-DuChateau 1998, Boulakia-Grandmont-O. 2009,
Carleman estimates, Cristofol, Gaitan, Roques, Yamamoto...).

Indicatrix function : f = χD
(Hettlich-Rundell 2001: domain derivative).

Punctual support : f =
∑N
j=1 pjδxj ,tj

(Yamatani-Ohnaka 1997, El Badia-Ha Duong 2002: backwards heat eqn.).

When and where it appears? : f(x0, T0) 6= 0
(Ikehata 2006: indicatrix functionals).

Separation of variables : f = σ(t)f(x)
(Yamamoto 1995 waves; G.Garćıa at al. 2013 heat).
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Motivation: source reconstruction–scalar case

Applications

Identification/validation of sources punctual / stationnary or not

Pollutant/radiactive/odour emmissions in atmospheric chemistry (at global,
regional or megacity scales), c.f. Newsam-Enting 1988, Enting 2002, Saide,
Bocquet, O., Gallardo 2009.

Water pollution, coastal, lakes, rivers , c.f. Okubo 1980, Linfield 1987.

Optimal design of monitoring networks , c.f. Rodgers 2000, O., Faundez,
Gallardo 2013.

Detection and attribution in climate change , c.f. Puel 2002, Garcia, O.,
Puel 2011, Hannart 2012.

Detection of phase transition (coupled heat equation) , c.f. Homberg, Lu,
Sakamoto, Yamamoto, 2013.
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Motivation: source reconstruction–scalar case

Back to the inverse problem

Inverse problem: Given an observatory O ⊂ Ω, T > 0, if σ(t) is known, we want
to recover the source f(x) in: ut −∆u = f(x)σ(t) in Ω× (0, T ),

u = 0 on Γ× (0, T ),
u(·, 0) = u0 in Ω,

from local (in space) measurements of u|O×(0,T ).

We focus in:
• Uniqueness and stability of f(x) w.r.t. measurements.
• How to design a reconstruction algorithm for f(x) using null controls?
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Relations: null controls, Volterra eqs. and eigenfunctions
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Relations: null controls, Volterra eqs. and eigenfunctions

Null controls?

A null control is a source v with restricted support in that drives the solution of
the backward heat equation exactly to zero in a given time τ > 0:

− ϕt −∆ϕ = v|O×(0,τ) in Ω× (0, τ)

ϕ(τ) = ϕ0 in Ω

ϕ = 0 on Γ× (0, τ).

i.e.,
ϕ(τ) = ϕ0 and ϕ(0) = 0.

It is possible to prove (for instance using global Carleman inequalities
[Fursikov-Imanuvilov 1996]) that there exists such a control v(τ) and

‖v(τ)‖L2(O×(0,τ)) ≤ C exp

(
C1

τ

)
‖ϕ0‖L2(Ω).

(this is optimal so this is the “cost” of the null control).
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Relations: null controls, Volterra eqs. and eigenfunctions

General case

Here, σ 6= cte but known: To recover f(x) from u|O×(0,T ) in
ut −∆u = σ(t)f(x) in Ω× (0, T )

u(0) = 0 in Ω

u = 0 on Γ× (0, T )

we take w solution of 
wt −∆w = 0 in Ω× (0, T )

w(0) = f(x) in Ω

w = 0 on Γ× (0, T )

and then u defined by

u =

∫ t

0

σ(t− τ)w(τ)dτ := Kw

satisfies the forward system. Again, we will try to recover f from the following
identity (obtained by differentiating u):

σ(0)w(T ) +

∫ T

0

σ′(T − τ)w(τ)dτ = ∆u(T ) + σ(T )f(x)
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Relations: null controls, Volterra eqs. and eigenfunctions

Parenthesis: Volterra equation and duality

The definition of K naturally leads to solve a Volterra equation of second kind.

Given v ∈ L2(0, T ;L2(O)), ∃!θ ∈ H1(0, T ;L2(O)) such that θ(T ) = 0 and

K∗θ := σ(0)θt +

∫ T

t

(σ(s− t)θ(s) + σ′(s− t)θt(s)) ds = v(t)

with continuous dependence and ∀w ∈ L2(0, T ;L2(O))

(w,K∗θ)L2(0,T ;L2(O)) = (Kw, θ)H1(0,T,L2(O)).

This duality was previously used by [Yamamoto 1995] to derive a source
reconstruction formula for the wave equation.
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Relations: null controls, Volterra eqs. and eigenfunctions

First reconstruction formula

We had

σ(T )f(x) = −∆u(T ) + σ(0)w(T ) +

∫ T

0

σ′(T − τ)w(τ)dτ

By introducing the family of null controls v(τ) controlling from ϕ(τ) = ϕ0 to

ϕ(0) = 0 and K∗θ(τ) = v(τ), Kw = u we have

σ(T )

∫
Ω

f(x)ϕ0 =

= −
∫

Ω

∆u(T )ϕ0 + σ(0)

∫
Ω

w(T )ϕ0 +

∫ T

0

σ′(T − τ)

∫
Ω

w(τ)ϕ0 dτ

= −
∫

Ω

∆u(T )ϕ0 − σ(0)

∫ T

0

∫
O
wv(T )︸ ︷︷ ︸

(w,K∗θ(T ))︸ ︷︷ ︸
(u,θT )

−
∫ T

0

σ′(T − τ)

∫ T

0

∫
O
wv(τ) dt︸ ︷︷ ︸

(w,K∗θ(τ))︸ ︷︷ ︸
(u,θτ )

dτ
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Relations: null controls, Volterra eqs. and eigenfunctions

Source reconstruction (heat equation)

By observability-controllability duality:

Proposition 1 (Garćıa–Osses–Tapia, 2013)

Assume σ ∈W 1,∞(0, T ), σ(T ) 6= 0 then ∀ϕ0 ∈ L2(Ω)∫
Ω

fϕ0 = −σ(T )−1(∆u(T ), ϕ0)L2(Ω)︸ ︷︷ ︸
L

−σ(0)σ(T )−1(u, θ(T ))H1(L2(O))︸ ︷︷ ︸
C1

−σ(T )−1

∫ T

0

σ′(T − τ)(u, θ(τ))H1(L2(O))dτ︸ ︷︷ ︸
C2

where θ(τ) are the solutions of Volterra type associated to null controls v(τ) for
τ ∈ (0, T ]. Moreover, if σ′(t) = 0 for t ∈ (T − ε, T ] then we can directly obtain

‖f‖L2(Ω) ≤ C(‖∆u(T )‖L2(Ω) + ‖u‖H1(0,T ;L2(O))).
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Relations: null controls, Volterra eqs. and eigenfunctions

Fortunately, it is possible to drop ∆u(T )...

by chosing ϕ0 = ϕk as the eigenfrequencies of the Laplacian.
On one hand:∫

Ω

fϕk = −σ(T )−1(∆u(T ), ϕk)L2(Ω)︸ ︷︷ ︸
Lk

−σ(0)σ(T )−1(u, θ
(T )
k )H1(L2(O))︸ ︷︷ ︸

C1k

−σ(T )−1

∫ T

0

σ′(T − τ)(u, θ
(τ)
k )H1(L2(O))dτ︸ ︷︷ ︸

C2k

and on the other hand (λk > 0 are the corresponding eigenfrequencies):∫
Ω

fϕk = −
(∆u(T ), ϕk)L2(Ω)

λk
∫ T

0
e−λk(T−s)σ(s)ds

so we can eliminate the term in ∆u(T )!
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Relations: null controls, Volterra eqs. and eigenfunctions

Source reconstruction (heat equation)

Proposition 2 (Garćıa–Osses–Tapia, 2013)

Let f ∈ L2(Ω) and σ ∈W 1,∞(0, T ), σ(T ) 6= 0 then∫
Ω

fϕk =
C1k + C2k

ak
,

provided that

ak := 1− λk
σ(T )

∫ T

0

e−λk(T−s)σ(s)ds 6= 0,

where C1k and C2k only depend on measurements (u, ut)|×(0,T ).

Remark

If f is more regular, say ‖f‖D((−∆)ε) ≤M for some ε ∈ (0, 1), you still have

logarithmic conditional stability [GarcÍa–Takahashi, 2011] [Li-Yamamoto-Zou 2009] :

‖f‖L2(Ω) ≤ CM,ε

∣∣log ‖ut‖L2(0,T ;L2(O))

∣∣− ε
1−ε .

Cristhian Montoya (University of Dubrovnik) Inverse source problems 14 / 39



Our inverse problems

Outline

1 Motivation: source reconstruction–scalar case

2 Relations: null controls, Volterra eqs. and eigenfunctions

3 Our inverse problems

4 Reconstruction: systems with constant coefficients

5 Reconstruction: systems with space dependent coefficients

6 Numerical results ( in progress but...)

Cristhian Montoya (University of Dubrovnik) Inverse source problems 15 / 39



Our inverse problems

Inverse problem: coupled heat system

Inverse problem: Given an observatory O ⊂ Ω, T > 0, if σ(t) is known, we want
to recover the source F (x) = (f1(x), f2(x), . . . , fn(x)) in: ∂tY −∆Y +QY = σ(t)F (x) in Ω× (0, T ),

Y = 0 on ∂Ω× (0, T ),
Y (·, 0) = 0 in Ω,

where

Q = Q(x) =


q11 q12 q13 · · · q1n

0 q22 q23 · · · q2n

0 0 q33 · · · q3n

...
...

. . .
. . .

...
0 0 · · · 0 qnn


from local (in space) measurements of yi|O×(0,T ), for some i = 1, . . . , n.

We focus in:
• Uniqueness and stability of F (x) from local observations.
• How to design a reconstruction algorithm for F (x) using null controls?
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Our inverse problems

A priori knowledge in systems

Separate variables : f = σ(t)f(x)
G.Garćıa, – , Osses 2017: Stokes system (source reconstruction).
Alabau–Boussouira et al. 2016: two wave equations (identification and
stability).

Stability for determining coefficients

Cristofol at al. 2006 (linear case) and Cristofol at al. 2012 (nonlinear
case)(2× 2 systems).
Benabdallah et al. 2009 (2× 2 systems).
Cristofol et al. 2013: discontinuous coefficients (Carleman estimates–optimal
control).
Carreño at al. 2018: hyperbolic systems.
Dou and Yamamoto 2019: two Schrödinger equations in 3D.
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Reconstruction: systems with constant coefficients
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Reconstruction: systems with constant coefficients

Case 1: potential matrix with constant coefficients

σ is arbitrary but known: To recover F (x) from yn|O×(0,T ) in

(1)

 ∂tY −∆Y +QY = σ(t)F (x) in Ω× (0, T ),
Y = 0 on ∂Ω× (0, T ),
Y (·, 0) = 0 in Ω.

We take W solution of ∂tW −∆W +QW = 0 in Ω× (0, T ),
W = 0 on ∂Ω× (0, T ),
W (·, 0) = σ(0)F (·) in Ω,

and then Y is defined by

Y (x, t) =

t∫
0

σ(s)W (x, t− s)ds =: KW, (x, t) ∈ Ω× (0, T ).

By evaluating at t = T the main equations of (1), we obtain the following identity:

σ(0)W (x, T )+

T∫
0

∂tσ(T−s)W (x, s)ds−∆Y (x, T )+

T∫
0

σ(s)QW (x, T − s)ds = σ(T )F (x).
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Reconstruction: systems with constant coefficients

We had

σ(0)W (x, T ) +

T∫
0

∂tσ(T − s)W (x, s)ds−∆Y (x, T ) +

T∫
0

σ(s)QW (x, T − s)ds = σ(T )F (x).

By multiplying the above identity by elements Ξk := (ϕk, . . . , ϕk) (where {ϕk}k∈N are L2–eigenfunctions of
the Laplace operator) and integrating in space, we get

σ(T )(F,Ξk)L2(Ω)n =σ(0)(W (x, T ),Ξk)L2(Ω)n +

T∫
0

∂tσ(T − s)(W (s),Ξk)L2(Ω)nds

− (∆Y (T ),Ξk)L2(Ω)n +

T∫
0

σ(T − s)(QW (s),Ξk)L2(Ω)nds.

• Consider the decomposition Y (x, t) =
∑
k∈N

Yk(t)ϕk(x), where Yk(t) = (yk1 (t), . . . , ykn(t))∗ is the

unique solution of the ordinary differential system

(2)

{
Y ′k(t) + (λkIn +Q)Yk(t) = σ(t)Fk,
Yk(0) = 0,

where Fk = ((f1, ϕk)L2(Ω), . . . , (fn, ϕk)L2(Ω))
∗ =: (fk1 , . . . , f

k
n)∗.
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Reconstruction: systems with constant coefficients

• By solving (2), for every k ∈ N, we obtain

Yk(t) =

M=(mij(t))ni,j=1︷ ︸︸ ︷( t∫
0

Φ̃k(t)Φ̃
−1
k (s)σ(s)ds

)
Fk =

(
n∑
j=1

m1j(t)f
k
j ,

n∑
j=1

m2j(t)f
k
j , . . . ,

n∑
j=1

mnj(t)f
k
j

)∗
,

where M = (mij(t)) =

t∫
0

Φ̃k(t)Φ̃
−1
k (s)σ(s)ds and Φ̃k is a fundamental matrix associated to the

linear ordinary differential system: Z′ + (λkIn +Q)Z = 0.

• Additionally,

−(∆Y (T ),Ξk)L2(Ω)n = −(Y (T ),∆Ξk)L2(Ω)n = λk(Y (T ),Ξk)L2(Ω)n = λk

n∑
j=1

y
k
j (T ).

• At this moment, the reconstruction formula is given by:

n∑
j=1

(
1 −

λk

σ(T )

n∑
i=1

mij(T )

)
f
k
j =

σ(0)

σ(T )
(W (T ),Ξk)

L2(Ω)n
+

1

σ(T )

T∫
0

∂tσ(T − s)(W (s),Ξk)
L2(Ω)n

ds

+
1

σ(T )

T∫
0

σ(T − s)(QW (s),Ξk)
L2(Ω)n

ds.
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Reconstruction: systems with constant coefficients

Null controls with one scalar control?

[M. González–Burgos, L. de Teresa 2010]:

Q∗ ∈ L∞(Ω)n
2

, B = diag(0, 0, . . . , 0, 1),∈Mn(R) and

qij ≥ q0 > 0 in an open set O0 ⊂ O, ∀i > j, i, j = 1, . . . , n.

Let τ ∈ (0, T ] and Ξ0 ∈ L2(Ω)n. Then, there exists a control function
U (τ) = U (τ)(Ξ0) ∈ L2(0, T ;L2(O)n) such that the solution Ψ to

(2)

 −∂tΨ−∆Ψ +Q∗Ψ = 1OBU
(τ) in Ω× (0, τ),

Ψ = 0 on ∂Ω× (0, τ),
Ψ(·, τ) = Ξ0 in Ω,

satisfies Ψ(·, 0) = 0 in Ω.
Moreover, there exists a positive constant C0 depending only on Ω and O such
that

(3) ‖u(τ)
n ‖L2(0,T ;L2(O)) ≤ C0e

C(τ)‖Ξ0‖L2(Ω)n .
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Reconstruction: systems with constant coefficients

Now we drive (control) to zero each eigenfrequency
starting from a unitary initial condition in L2

Ω = (0, 1)2; q11 = q22 = q21 = 1, q12 = 0; O = (0, 1)× (0.3,0.7);∆t = 5× 10−3;
T = 1.
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Reconstruction: systems with constant coefficients

• Since Q is a constant matrix, we can solve the following null controllability problems in Ω× (0, s):

 −∂tΨ−∆Ψ +Q∗Ψ = 1OBU
(s)
k

Ψ = 0
Ψ(·, s) = Ξk(·)

and

 −∂tΨ−∆Ψ +Q∗Ψ = 1OQ
∗BU

(s)
k

Ψ = 0

Ψ(·, s) = Q∗Ξk(·),

where Ψ := Q∗Ψ.

Furthermore, integrating by parts in L2(0, s;L2(Ω)n), we obtain (after extending U
(s)
k by zero at

(s, T ))

(W (s),Ξk)L2(Ω)n = −(W, 1OBU
(s)
k )L2(0,s;L2(Ω)n) = −(W,BU

(s)
k )L2(0,T ;L2(O)n).

and

(QW (s),Ξk)L2(Ω)n = −(W, 1OQ
∗
BU

(s)
k )L2(0,s;L2(Ω)n) = −(W,Q

∗
BU

(s)
k )L2(0,T ;L2(O)n).

• Systems of Volterra equations: One system with data η1
k := 1OBU

(s)
k , and another one with data

η2
k := 1OQ

∗BU
(s)
k . In consequence, we have

K
∗
(Θ

1
k) = 1OBU

(s)
k and K

∗
(Θ

2
k) = 1OQ

∗
BU

(s)
k , ∀k ∈ N.
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Reconstruction: systems with constant coefficients

First reconstruction formula

Theorem 1 (C.M, 2021)

Consider σ ∈ W 1,∞(0, T ) with σ(T ) 6= 0. Furthermore, for some k ∈ N

(4) a
Q
j,k(T ) :=

(
1−

λk

σ(T )

n∑
i=1

mij(T )

)
6= 0, ∀i, j = 1, . . . , n,

where M = (mij(t)) =
t∫
0

Φ̃k(t)Φ̃−1
k (s)σ(s)ds and Φ̃k is a fundamental matrix associated to the linear

ordinary differential system: Z′ + (λkIn +Q)Z = 0. Then, for every solution Y ∈ W 2,1
2 (Ω× (0, T )) to

(1), the source F = (f1, . . . , fn)∗ ∈ L2(Ω)n satisfies the local reconstruction identity

(5)

n∑
j=1

a
Q
j,k(T )(fj , ϕk)L2(Ω) =−

σ(0)

σ(T )
(yn, (θ

(T )
1,k )n)H1(0,T ;L2(O))

−
1

σ(T )

T∫
0

∂tσ(T − s)(yn, (θ(s)
1,k)n)H1(0,T ;L2(O))ds

−
1

σ(T )

T∫
0

σ(T − s)(yn, (θ(s)
2,k)n)H1(0,T ;L2(O))ds.
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Reconstruction: systems with constant coefficients

Case 2: coupling in the principal part

σ is arbitrary but known: To recover F (x) from yn|O×(0,T ) in

(6)

 ∂tY −D∆Y = σ(t)F (x) in Ω× (0, T ),
Y = 0 on ∂Ω× (0, T ),
Y (·, 0) = 0 in Ω,

where the diffusion matrix D∗ is diagonalizable with positive real eigenvalues, i.e., for
J = diag(di)n×n with d1, d2, . . . , dn > 0, one has D∗ = P−1JP , with
P ∈Mn(R), detP 6= 0.
Moreover,

di 6= dj , for i 6= j, 1 ≤ i, j ≤ n.

Null controllability property: given an initial datum Ξ0 ∈ L2(Ω)n, we look for a
control function U ∈ L2(0, T ;L2(O)n) such that the corresponding solution Ψ to

(7)

 −∂tΨ−D
∗∆Ψ = 1OBU in Ω× (0, T ),

Ψ = 0 on ∂Ω× (0, T ),
Ψ(·, T ) = Ξ0 in Ω,

satisfies Ψ(·, 0) = 0. [Khodja at al 2009, 2011].
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Reconstruction: systems with constant coefficients

Second reconstruction formula

Theorem 2 (C.M, 2021)

Consider σ ∈ W 1,∞(0, T ) with σ(T ) 6= 0. Furthermore, for some k ∈ N

(8) a
D
j,k(T ) :=

(
1−

λk

σ(T )

n∑
`=1

(
n∑
i=1

di`

)
m`j(T )

)
6= 0, ∀i, j = 1, . . . , n,

where M = (mij(t)) =
t∫
0

Φ̃k(t)Φ̃−1
k (s)σ(s)ds and Φ̃k a fundamental matrix associated to the ordinary

differential system: Z′ + λkDZ = 0.. Then, for every solution Y ∈ W 2,1
2 (Ω× (0, T )) to (6), the source

F = (f1, . . . , fn)∗ ∈ L2(Ω)n satisfies the local reconstruction identity

(9)

n∑
j=1

aDj,k(T )(fj , ϕk)L2(Ω) = − σ(0)

σ(T )
(yn, (θk)n)H1(0,T ;L2(O))

− 1

σ(T )

T∫
0

∂tσ(T − s)(yn, (θk)n)H1(0,T ;L2(O))ds.
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Reconstruction: systems with space dependent coefficients

Outline

1 Motivation: source reconstruction–scalar case

2 Relations: null controls, Volterra eqs. and eigenfunctions

3 Our inverse problems

4 Reconstruction: systems with constant coefficients

5 Reconstruction: systems with space dependent coefficients

6 Numerical results ( in progress but...)
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Reconstruction: systems with space dependent coefficients

One dimensional model
Inverse problem: To recover F (x) from y2|O×(0,T ) in

(10)

 ∂tY + (

L︷ ︸︸ ︷
−∆ +Q(x))Y = σ(t)F (x) in (0, π)× (0, T ),

Y (0, t) = Y (π, t) = 0 in (0, T ),
Y (·, 0) = 0 in (0, π),

where L : H2(0, π)2 ∩H1
0 (0, π)2 ⊂ L2(0, π)2 → L2(0, π)2 and Q is given by

Q(x) =

(
0 0

q(x) 0

)
and q ∈ L∞(0, π) ∩W 1,∞

(Õ), Õ ⊂ O ⊂ (0, π).

• Consider the families (for k ∈ N) (here, ϕk are the normalized eigenfunctions of the Laplace operator )

B =

{
Φ1,k =

(
0
ϕk

)
,Φ2,k =

(
ϕk
ψk

)}
and B∗ =

{
Φ
∗
1,k =

(
ψk
ϕk

)
,Φ
∗
2,k =

(
ϕk
0

)}
,

(11)
ψk(x) = αkϕk(x)−

1

k

x∫
0

sin(k(x− ζ))(Ik(q)ϕk(ζ)− q(ζ)ϕk(ζ))dζ; Ik(q) :=

π∫
0

q(x)ϕk(x)dx, ∀ k ∈ N.

αk =
1

k

π∫
0

x∫
0

sin(k(x− ζ))((Ik(q)ϕk(ζ)− q(ζ)ϕk(ζ)))ϕk(x)dζdx.
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Reconstruction: systems with space dependent coefficients

Spectral analysis

Then, one has [Duprez 2017]

a) The spectrum of L∗ and L are given by ρ(L∗) = ρ(L) = {k2 : k ∈ N}.
b) For every k ∈ N, the eigenvalue k2 of L∗ has algebraic multiplicity 1. Moreover, in this case,

(12)

{ (
L∗ − k2Id

)
Φ∗1,k = Ik(q)Φ∗2,k,(

L∗ − k2Id
)

Φ∗2,k = 0.

c) For every k ∈ N, the eigenvalue k2 of L has algebraic multiplicity 1. Moreover, in this case,

(13)

{ (
L− k2Id

)
Φ1,k = 0,(

L− k2Id
)

Φ2,k = Ik(q)Φ1,k.

d) The sequences B and B∗ are biorthogonal Riesz basis of L2(0, π)2.

e) The sequence B∗ is a Schauder basis of H1
0 (0, π)2 and B is its biorthogonal basis in H−1(0, π)2.
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Reconstruction: systems with space dependent coefficients

Third reconstruction formula

H1 Consider σ ∈ W 1,∞(0, T ) with σ(T ) 6= 0. Furthermore, for some k ∈ N

aLk (T ) := σ(T )

(
1− k2

σ(T )

T∫
0

e−k
2(T−s)σ(s)ds

)
6= 0,

bLk (T ) := −Ik(q)
(

1− k2
T∫
0

(T − s)e−k
2(T−s)σ(s)ds

)
.

H2 Consider the above result concerning spectral analysis, see [Duprez 2017].
H3 Null controllability. For any s ∈ (0, T ], assume that the adjoint system associated to (34) with

distributed control 1OU
(s) = (0, 1Ou

(s)
2 ) satisfies the null controllability property; [Duprez 2017].

H4 Consider Volterra equations and its properties.

Theorem 3 (C.M, 2021)

Let H1–H4 be satisfied. Then, for any solution Y ∈ W 2,1
2 ((0, π)× (0, T )) of (34), the source

F = (f1, f2) ∈ L2(0, π)2 satisfies

(14)

a
L
k (T )

(
f
ϕk
1 + f

ψk
1 + f

ϕk
2

)
+ b

L
k (T )f

ϕk
1 = −σ(0)(y2, θ

(s)
k )H1(0,T ;L2(O))

−
T∫

0

∂tσ(T − s)(y2, θ
(s)
k )H1(0,T ;L2(O))ds,

where f
ϕk
1 := (f1, ϕk)L2(0,π), f

ψk
1 := (f1, ψk)L2(0,π) and f

ϕk
2 := (f2, ϕk)L2(0,π).
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Numerical results ( in progress but...)
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Numerical results ( in progress but...)

Three cases of σ(t)

a) σ = σ0 constant.
b) σ non negative and increasing.
c) σ = σ0 + b cos(ωt), σ0 constant, b 6= 0, y ω ∈ R \D, where D is an
appropriate discrete set.
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Numerical results ( in progress but...)

Example in 2D

Consider O = (0, 1)× (0.3,0.7) and T = 1.
The inverse problem consists in recovering F (x1,x2

) = (f1(x1, x2), f1(x1, x2))
from y2|O×(0,T ) in

∂ty1 −∆y1 + y1 + y2 = σ(t)f1(x1, x2) in (0, 1)2 × (0, T ),
∂ty2 −∆y2 + y2 = σ(t)f2(x1, x2) in (0, 1)2 × (0, T ),
(y1, y2)(0, t) = (y1, y2)(1, t) = 0 in (0, T ),
(y1, y2)(·, 0) = 0 in (0, 1).

Can we observe the first component y1|O×(0,T ) ?
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Numerical results ( in progress but...)

Ω = (0, 1)2, O = (0, 1)× (0.3,0.7). 5 % noise. 40 freq.
Gaussian sources - σ oscillating

source

source
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Numerical results ( in progress but...)

Ω = (0, 1)2, O = (0, 1)× (0.3,0.7). 5 % noise. 40 freq.
Gaussian sources - σ increasing

source

source
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Numerical results ( in progress but...)

Source coefficients - case σ increasing
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Numerical results ( in progress but...)

Comments and open problems

• Reconstruction formulas involving controllability to zero, Volterra equations,
spectral analysis. Finite elements, Hilbert Uniqueness Method (HUM).

• Numerical experiments: coupling in the main operator & model in 1D; more
examples.

• Is it possible to extend the above strategy to nonlinear cases?

• Can one extend the model in 1D to higher dimensions?

• Can one apply this framework to dispersive models (i.e., Korteweg–de Vries
linear equation)?, flame models (Kuramoto–Sivanshinky equation)?

• Can we optimize the above procedure?
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Numerical results ( in progress but...)

Hvala vam puno

Thank you very much
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