

Optimal Passive Control Of Vibrational

Systems Using Mixed Performance

Measures

Ivica Nakić

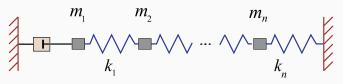
Faculty of Science, University of Zagreb (joint work with Z. Tomljanović and N. Truhar)

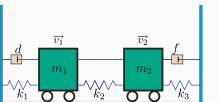
International Workshop on Optimal Control of Dynamical Systems and Applications, Osijek, June 22, 2018. Financed by the HRZZ project IP-2016-06-2468

Linear vibrational system, modeled as a 2nd order matrix differential equation

 $M\ddot{q} + D\dot{q} + Kq = F$

M mass matrix *D* damping matrix *K* stifness matrix *F* external force





Setting

Attenuate unwanted vibrations of the system by the use of passive damping.

In other words, find an appropriate damping matrix *C* such that the system vibrates as little as possible.

System will have *N* modes of vibration, *N* dimension of the system, not all modes are dangerous. Usually there is a range of dangerous ones.

Important classes:

→ based on the analysis of stationary system (external force F = 0, excitation by the initial condition), some interesting ones:

- \rightarrow based on eigenvalues (e.g. max $\Re \lambda$, max $\frac{\Re \lambda}{|\lambda|}$)
- → based on the total energy (e.g. max $\int_0^\infty E(t) dt$, avg. $\int_0^\infty E(t) dt$)

 \rightarrow based on the analysis of excitation by a particular external force

- \rightarrow harmonic excitation
- → periodic non-harmonic excitation

For a random external force we can use the machinery of control theory.

Again different criteria, most usefull ones:

- \rightarrow H_2 norm
- \rightarrow H_{∞} norm

*H*₂ norm criterion: external force modeled by (white/coloured) noise, we obtain best damping for a "typical" external force.

 H_2 norm criterion seems like the best choice for a large class of vibrational systems (non-critical systems, where external environment changes).

H_2 norm of a vibrational system

$$G = G(D) = \begin{cases} M\ddot{q} + D\dot{q} + Kq = B_2 u, \\ y = \begin{bmatrix} C_1 q \\ C_2 \dot{q} \end{bmatrix}.$$

Let

$$\boldsymbol{C} = \begin{bmatrix} \boldsymbol{C}_1 & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{C}_2 \end{bmatrix}, \ \boldsymbol{B} = \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{M}^{-1}\boldsymbol{B}_2 \end{bmatrix}, \ \boldsymbol{A} = \boldsymbol{A}(\boldsymbol{D}) = \begin{bmatrix} \boldsymbol{0} & \boldsymbol{I} \\ -\boldsymbol{M}^{-1}\boldsymbol{K} & -\boldsymbol{M}^{-1}\boldsymbol{D} \end{bmatrix}$$

Then the H_2 norm of the system is given by $Tr(C^*CX)$, where X is the solution of the Lyapunov equation

$$AX + XA^* = -BB^*.$$

Different linearizations of the vibrational system amount to different state transformations of the system (A, B, C).

Proposition The optimization problem

 $\min_{\textit{feasible D}} \| \textbf{G}(\textbf{D}) \|_2$

is not well posed.

What is the best damping matrix for the H_2 norm criterion?

 $D = \infty$.

Also when doing numerics, for some configurations one obtains that the damping coefficient should be as large as possible.

 H_2 norm can be interpreted as a measure of the average output energy over the impulsive inputs.

But because we calculate H_2 norm of the linearized system, half the impulsive inputs are not taken into account.

This seems to be a general issue when the (first order) control system is obtain by a linearization from the higher order systems.

H_2 norm of a homogeneous system

We generalize the total energy approach for the measurement of unwanted vibrations of a homogeneous vibrational system which is in a way counterpart to the H_2 norm of the system. We take u = 0 but include the initial conditions $q(0) = q_0$, $\dot{q}(0) = \dot{q}_0$.

The H_2 norm of the homogeneous system is defined by

$$\int_{\|\boldsymbol{q}_0\|^2 + \|\dot{\boldsymbol{q}}_0\|^2 = 1} \int_0^\infty \boldsymbol{e}(t; \boldsymbol{q}_0, \dot{\boldsymbol{q}}_0) \, \mathrm{d}t \, \mathrm{d}\sigma,$$

where *e* is the energy of the part of the system (or something else *C* measures) and σ is a surface measure on the unit sphere.

This norm can be written as $Tr(C^*CY)$, where Y solves $AY + YA^* = -Z_{\sigma}$, Z_{σ} depending only on the measure σ .

Mixed H_2 norm

The issue with the H_2 norm of the corresponding homogeneous system is that it does not carry any information about the external forces, and the issue with the standard H_2 norm is that it does not carry all the needed information about the initial data. A natural choice is to try to combine these two norms by taking their convex sum.

Let 0 . We define*p* $-mixed <math>H_2$ norm of the system *G* by

 $\operatorname{Tr}(\tilde{C}^*\tilde{C}X), \text{ where } \tilde{A}X + X\tilde{A}^* = -p\tilde{Z}_{\sigma} - (1-p)\tilde{B}\tilde{B}^*.$

p-mixed H_2 norm does not depend on the choice of the linearization.

One can also think of it as the standard H_2 norm with an additional constraint taking into account the initial data.

A convenient linearization

$$\breve{\boldsymbol{A}} = \begin{bmatrix} 0 & \Omega \\ -\Omega & -\breve{\boldsymbol{D}} \end{bmatrix}, \quad \breve{\boldsymbol{C}} = \begin{bmatrix} \breve{\boldsymbol{C}}_1 & 0 \\ 0 & \breve{\boldsymbol{C}}_2 \end{bmatrix}, \quad \breve{\boldsymbol{B}} = \begin{bmatrix} 0 \\ \breve{\boldsymbol{B}}_2 \end{bmatrix},$$

where $\Omega = \text{diag}(\omega_1, \dots, \omega_n)$ are square roots of the eigen-frequencies of the corresponding undamped system (with D = 0).

A natural choice for C_1 , C_2 , B_2 and σ gives: $\check{Z}_{\sigma} = \frac{1}{2n}Z$, $Z = \text{diag}(Z_1, Z_1)$, $Z_1 = \text{diag}(1, \dots, 1, 0, \dots, 0)$, $\check{B}_2 = Z_1$, $\check{C}^*\check{C} = \frac{1}{2}Z$. Hence, *p*-mixed H_2 norm is then given by

$$Tr(ZX), \text{ where } \breve{A}X + X\breve{A}^* = - \begin{bmatrix} pZ_1 & 0\\ 0 & Z_1 \end{bmatrix}.$$

Global optimization problem revisited

Theorem Let $Z_1 = I$. Let

 $\mathcal{D}_{s} = \{ \breve{D} \in \mathbb{R}^{n \times n} : \breve{D} \ge 0 \text{ and the corresponding } \breve{A} \text{ is stable} \}.$

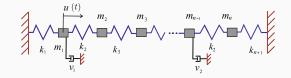
Then for all 0 there exists a unique global minimum of the following optimization problem:

minimize $\operatorname{Tr}(X)$ subject to $\breve{A}X + X\breve{A}^* = -\begin{bmatrix} pI & 0\\ 0 & I \end{bmatrix}$ and $\breve{D} \in \mathcal{D}_s$.

The minimum is attained at $\breve{D} = \sqrt{\frac{2(1+p)}{p}}\Omega$.

For p = 0 we get ∞ , the case of the standard H_2 norm. For p = 1 we get 2Ω , which was already known as the global optimal matrix for this criterion.

Numerical experiments - setting



We assume internal damping of the form $\alpha \cdot 2 \Omega.$ We take

$$n = 100; \quad \alpha = 0.02$$

$$k_i = 100, \quad \forall i; \qquad m_i = \begin{cases} 200 - 2i, & i = 1, \dots, 50, \\ i + 50, & i = 51, \dots, 100. \end{cases}$$

Primary excitation matrix B_2 is applied to 5 consecutive masses, i.e.

$$\textbf{\textit{B}}_2(1:5,1:5) = \text{diag}(5,4,3,2,1),$$

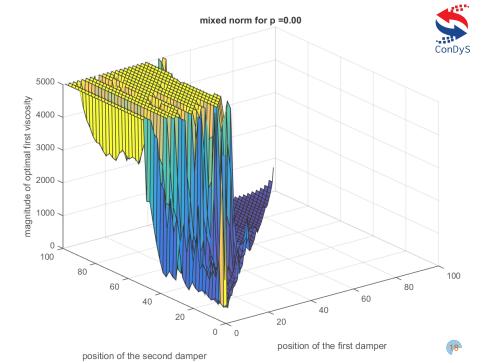
Numerical experiments - setting

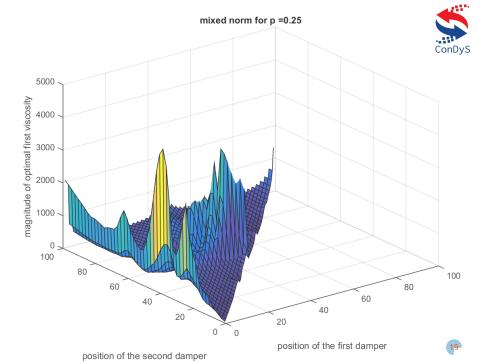
We are interested in the 10 states equally distributed ($C_2 = 0$)

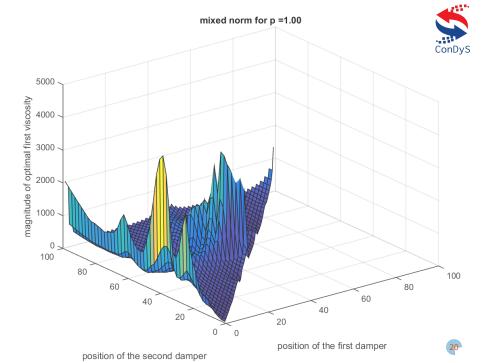
$$C_1(1:10,46:55) = I_{10\times 10}$$

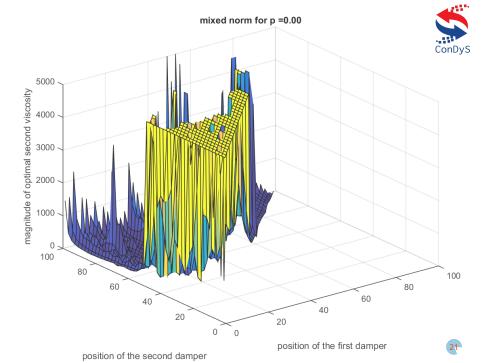
The geometry of the external damping is determined by two dampers:

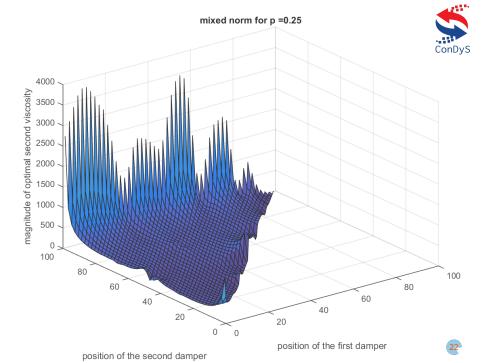
$$D_{\text{ext}} = \begin{bmatrix} e_i & e_j \end{bmatrix} \text{diag}(v_1, v_2) \begin{bmatrix} e_i^T \\ e_j^T \end{bmatrix}$$

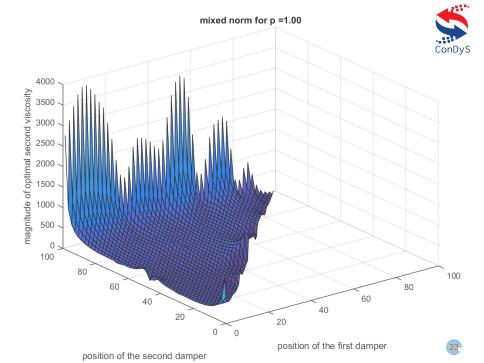


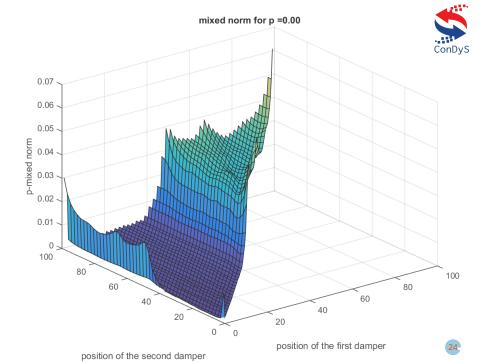


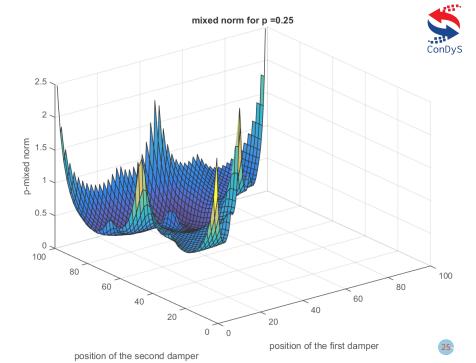


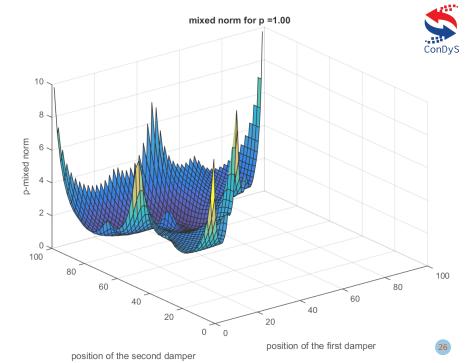












Thanks for the attention!

