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Seমng
Linear vibrational systems, modeled as a 2nd order matrix ODE

Mq̈+ Dq̇+ Kq = F

Mmass matrix (M > 0)
D damping matrix (D ≥ 0)
K stifness matrix (K > 0)
F external force
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Aim

Aim: Attenuate unwanted vibrations of the system by the use of
passive damping.

In other words, find an appropriate damping matrix D such that the
system vibrates as little as possible.
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Why?
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Opঞmizaঞon criteria
For a random/unknown external force it is typical to use the machinery
of the control theory.
Many different optimization criteria from control theory, most
common ones:
➔ H2 norm
➔ H∞ norm
H2 norm criterion: external force modeled by (white/colored) noise, we
obtain best damping for a ”typical” external force. A good choice for a
large class of vibrational systems (non-critical systems, where external
environment changes).

Let
y =

[
C1q
C2q̇

]

be the measured output of the system.
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H2 norm of a vibraঞonal system

G = G(D) =

⎧
⎨

⎩

Mq̈+ Dq̇+ Kq = B2u,

y =
[
C1q
C2q̇

]
.

Let

C =

[
C1 0
0 C2

]
, B =

[
0

M−1B2

]
, A = A(D) =

[
0 I

−M−1K −M−1D

]
.

Then the H2 norm of the system is given by Tr(C∗CX), where X is the
solution of the Lyapunov equation

AX+ XA∗ = −BB∗.

Different linearizations (transformations to 1st order ODE) of the
vibrational system amount to different state transformations of the
system (A,B,C). 6



A problem

Proposition
The optimization problem

min
feasible D

∥G(D)∥2

is not well posed.

What is the best damping matrix for the H2 norm criterion?

D = ∞.

Also when doing numerics, for some configurations one obtains that
the damping coefficient (viscosity of the damper) should be as large as
possible.
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Þǚɲّ
UǑ ɲȏɓ Ȳȏɓȵ
ƩȏȄƩȵƷɋƷ ȏɫƷȵ ɲȏɓȵ
ȽɋȵɓƩɋɓȵƷً Ǡɋ ȽɓȵƷǹɲ
ɬǠǹǹ Ȅȏɋ ɫǠƨȵƌɋƷِ



Why?

H2 norm can be interpreted as a measure of the average output
energy over the impulsive inputs.

But because we calculate H2 norm of the linearized system, half the
impulsive inputs are not taken into account.

This seems to be a general issue when the (first order) control system
is obtain by a linearization from the higher order systems.
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H2 norm of a homogeneous system
We define a H2 norm of the homogeneous system which takes into
account the initial conditions.

It is defined by ∫

∥q0∥2+∥q̇0∥2=1

∫ ∞

0

e(t;q0, q̇0)dtdσ,

where e is the energy of the part of the system (or whatever else C
measures).

This norm can be written as Tr(C∗CY), where Y solves AY+ YA∗ = −Zσ.
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Mixed H2 norm
The issue with the H2 norm of the corresponding homogeneous system
is that it does not carry any information about the external forces.
The issue with the standard H2 norm is that it does not carry all the
needed information about the initial data.
A natural choice is to try to combine these two norms by taking their
convex sum.
Let 0 ≤ p ≤ 1. Then p–mixed H2 norm of the system G is given by

Tr(C̃∗C̃X), where ÃX+ XÃ∗ = −pZ̃σ − (1− p)B̃B̃∗,

where (Ã, B̃, C̃) is a linearization of the system G. p–mixed H2 norm
does not depend on the choice of the linearization.
One can also think of it as the standard H2 norm with an additional
constraint taking into account the initial data.
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A convenient linearizaঞon

Ă =

[
0 Ω

−Ω −D̆

]
, C̆ =

[
C̆1 0

0 C̆2

]
, B̆ =

[
0

B̆2

]
,

where Ω = diag(ω1, . . . ,ωn) are square roots of the eigen–frequencies
of the corresponding undamped system (D = 0).

A natural choice for C1, C2, B2 and σ gives:
Z̆σ = 1

2nZ, Z = diag(Z1, Z1), Z1 = diag(1, . . . , 1, 0, . . . , 0),
B̆2 = Z1,
C̆∗C̆ = 1

2Z.
Hence, p-mixed H2 norm is then given by

Tr(ZX), where ĂX+ XĂ∗ = −
[
pZ1 0
0 Z1

]
.
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Global opঞmizaঞon problem revisited

Theorem
Let Z1 = I. Let

Ds = {D̆ : D̆ ≥ 0 and the corresponding Ă is stable}.

Then for all 0 < p ≤ 1 there exists a unique global minimum of the
following optimization problem:

minimize Tr(X) subject to ĂX+ XĂ∗ = −
[ pI 0

0 I

]
and D̆ ∈ Ds.

The minimum is attained at D̆ =
√

2(1+p)
p Ω.

For p = 0 we get∞, the case of the standard H2 norm.
For p = 1 we get 2Ω, which was already known as the global optimal
matrix for this criterion. 13

Ivica Nakić
ima smisla čak i za p=infty, što to znači?



Numerical experiments - seমng
X

Y Y

We assume internal damping of the form α · 2Ω.
We take

n = 100; α = 0.02

ki = 100, ∀i; mi =

{
200− 2i, i = 1, . . . , 50,
i+ 50, i = 51, . . . , 100.

Primary excitation matrix B2 is applied to 5 consecutive masses, i.e.

B2(1 : 5, 1 : 5) = diag(5, 4, 3, 2, 1).
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Numerical experiments - seমng
We are interested in the 10 states equally distributed, only
displacements (C2 = 0)

C1(1 : 10, 46 : 55) = I10×10

The geometry of the external damping is determined by two dampers:

Dext =
[
ei ej

]
diag(v1, v2)

[
eTi
eTj

]
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¾ǚƌȄǵȽ Ǒȏȵ
ɋǚƷ ƌɋɋƷȄɋǠȏȄٍ
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