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We consider a family of parameter-dependent operator Lyapunov equations

AνPν + PνA
∗
ν = −Qν (OLEν)

I ν – a parameter ranging over compact set N ⊆ Rd

I Aν – an unbounded operator on a Hilbert space X

I Qν – a bounded operator on X, Qν ≥ 0

I Pν – the solution

Problem

Find the efficient algorithm for solving (OLEν) for a wide range of parameters.
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Assumptions

For each ν

I D(Aν) is dense in X

I the operator Aν is closed and stable

Then there exists a unique nonnegative solution P ∈ L(X)

Pν =

∫ ∞
0

etAνQνe
tA∗
νdt

Different methods for computing the solution.

Bartels, Stewart Comm. ACM, 1972. - the Schur decomposition

Saad (1990) - Krylov suvspace methods

Simoncini SIAM Rev., 2016. - iterative methods

Computational expensive.

Can we construct the solution manifold

P = {Pν : ν ∈ K}

without applying the above methods for each new value of ν?
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The idea

To determine a finite number of values of ν that yield the best possible
approximation of the solution manifold P

In order to achieve this goal we rely on greedy algorithms and reduced bases
methods for parameter dependent PDEs or abstract equations in Banach
spaces.

A.Cohen, R.DeVore, Kolmogorov widths under holomorphic
mappings, IMA Journal on Numerical Analysis, 2016

A.Cohen, R.DeVore, Approximation of high-dimensional parametric
PDEs, Acta Numer., 2015.

Y.Maday, O.Mula, A.T. Patera, M.Yano, The generalized
Empirical Interpolation Method..., Computer Methods in Applied
Mechanics and Engineering, 2015.
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The pure greedy method

X – a Banach space K ⊂ X – a compact subset.

I The method approximates K by a a series of finite dimensional linear
spaces Vn (a linear method).

I Offline procedure generates approximation subspace within given precision
error; Online routine calculates approximations for any element in K.

The algorithm

The first step Choose x1 ∈ K such that

‖x1‖X = max
x∈K
‖x‖X .

The general step Having found x1..xn, denote Vn = span{x1, . . . , xn}.
Choose the next element

xn+1 := arg max
x∈K

dist(x, Vn) . (1)

The algorithm stops when σn(K) := maxx∈K dist(x, Vn) becomes less than
the given tolerance ε.
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Efficiency
In order to estimate the efficiency of the (weak) greedy algorithm we
compare its approximation rates σn(K) with the best possible one.

The Kolmogorov n width, dn(K)

– measures how well K can be approximated by a subspace in X of a fixed
dimension n.

dn(K) := inf
dimY=n

sup
x∈K

inf
y∈Y
‖x− y‖X .

Thus dn(K) represents optimal approximation performance that can be
obtained by a n-dimensional linear space.
The greedy approximation rates have same decay as the Kolmogorov widths.

Theorem

(Cohen, DeVore ’15) 3

For any α > 0, C0 > 0

dn(K) ≤ C0n
−α =⇒ σn(K) ≤ C1n

−α, k ∈ N,

where C1 := C1(α,C0, γ).

3A.Cohen, R.DeVore, Acta Numerica, 2015.
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Performance obstacles

I The set K in general consists of infinitely many vectors.

Finite discretisation of K.

I In practical implementations the set K is often unknown (e.g. it
represents the family of solutions to parameter dependent problems).

One uses some surrogate value replacing the exact distance by some
uniformly equivalent term.

Practical realisations depends crucially on an existence of an appropriate
surrogate!

7/15



Performance obstacles

I The set K in general consists of infinitely many vectors.
Finite discretisation of K.

I In practical implementations the set K is often unknown (e.g. it
represents the family of solutions to parameter dependent problems).

One uses some surrogate value replacing the exact distance by some
uniformly equivalent term.

Practical realisations depends crucially on an existence of an appropriate
surrogate!

7/15



Performance obstacles

I The set K in general consists of infinitely many vectors.
Finite discretisation of K.

I In practical implementations the set K is often unknown (e.g. it
represents the family of solutions to parameter dependent problems).
One uses some surrogate value replacing the exact distance by some
uniformly equivalent term.

Practical realisations depends crucially on an existence of an appropriate
surrogate!

7/15



Performance obstacles

I The set K in general consists of infinitely many vectors.
Finite discretisation of K.

I In practical implementations the set K is often unknown (e.g. it
represents the family of solutions to parameter dependent problems).
One uses some surrogate value replacing the exact distance by some
uniformly equivalent term.

Practical realisations depends crucially on an existence of an appropriate
surrogate!

7/15



Implementation: Residual Analysis
Knowing P1 how to measure

dist(P1 − Pν)

without knowing Pν?
Check residual

Rν(P1) := AνP1 − P1Aν +BνB
∗
ν

Theorem

Suppose that

1) Aν is sectorial, i.e it is a generator of an analytical semigroup ;

2) D(Aν1) = D(Aν2) and D(A∗ν1) = D(A∗ν2) for ν1, ν2 ∈ N .
Then

||Rν || ∼ ||P1 − Pν ||||Rν ||L(Xd1 ,X−1)
∼ ||P1 − Pν ||L(Xd1 ,X)

Tricky part - functional setting (norms in which spaces?)

Result in finite dimensional setting

N.T. Son, T. Stykel Siam J. Matrix Anal. Appl., 2017,

Collateral result:

Theorem

Lyapunov operator LA(P ) = AP + PA∗ is a bounded and coercive operator
from L(Xd

1 , X) to L(Xd
1 , X−1).
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Control problem
Consider the control system{

d
dt
x(t) = Ax(t) +Bu(t), 0 ≤ t ≤ T
x(0) = x0

where B is an admissible control operator.
Suppose that xT is a reachable state.
Then the optimal norm control û is of the type

û = B∗e(T−t)A
∗
φT

for some vector φT which corresponds to initial datum of the adjoint equation.
In addition, the following equation holds

xT − etAx0 = ΛTφT ,

where ΛT is the Gramian operator

ΛT =

∫ T

0

etABB∗etAdt

The minimal control energy is given by

‖û‖2 = ΛTφT · φT .
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For dissipative systems ΛT can be well approximated by the infinite time
Gramian operator.

Λ∞ =

∫ ∞
0

etABB∗etAdt

which is the solution to (OLE) with Q = BB∗

Solving for Λ∞ is much easier than constructing ΛT (which satisfies differential
Lyapunov equation).

But we even want to avoid solving for Λ∞ !

We introduce parameter dependence{
d
dt
xν(t) = Aνxν(t) +Bνuν(t), 0 ≤ t ≤ T
xν(0) = x0,ν

We apply the greedy algorithm for solving (approximately) Λ∞,ν

The algorithm is independent of x0, xT and T !

Generalisation of results given in

M.L. , E. Zuazua, Automatica, 2016.
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Example 1: 1D Heat Equation

{ ∂
∂t
z − ν∆z = 0 in (0, 1)× (0, T ),
z(0, t) = 0, z(1, t) = uν(t),
z(x, 0) = z0.

The parameter ν ranges within N = [0.7, 1300]

The greedy algorithm has been applied with

I discretized system of dimension N = 40,

I ε = 0.01,

I uniform discretization of N in l = 100.

The offline algorithm stops after only one iteration in approximately 0.06
seconds!

By change of variables:

Aν = νA =⇒ Λ∞,ν = νΛ∞

(Holds just for T =∞!)
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Example 1: 1D Heat Equation - Online part
We aim to steer the system
I from z0 = 0 to z1 = sin(πx)
I in time T = 0.1
I for ν = 23

Calculation of the approximate Gramian is rather straightforward.
It is applied for construction of the optimal control.
It drives the system to final state z1 within the error |z1− z(T )| = 3.77× 10−5.

a) b)

Figure: Evolution of a) the approximate control and b) the solution of semi-discretized
example problem.
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Example 2: Anisotropic 2D Heat Equation

∂
∂t
z −∆νz = 0 in (0, 1)2 × (0, T ),

z(x, t) = v0(x, t), for x ∈ ∂([0, 1]2)
z(x, 0) = 0

I ∆ν = ∂2

∂x21
+ (1 + ν) ∂2

∂x22
, ν ∈ N = [0, 1]

I

v0(x, t) =

{
uν(t), x1 = 1
0, otherwise

The greedy algorithm has been applied for the discretized system of dimension
N = 400 with ε = 0.05, and the uniform discretization of N in l = 40.

The offline algorithm stops after 12 iterations, choosing 12 parameter values
out of 40 in a zigzag manner.

Figure: Distribution of selected parameter values for perturbation parameter.
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Example 2: Anisotropic 2D Heat Equation-cont.
We aim to steer the system
I from z0 = 0 to z1 = sin(πx) ∗ sin(πx2)
I in time T = 1
I for ν = 0.1

Λ∞,ν is approximated by a suitable linear combination of Λ∞,i, i = 1..12.

Elapsed time is 0.21 s and the error is |z1 − z(T )| = 2.0× 10−4.

a) b)

Figure: a) Evolution of the approximate control and b) the states z(T ) (dashed) and
z1.
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Conclusion

Done:

I Greedy algo for solving parameter dependent OLE

I Provides approximation of infinite time control Gramians (independent of
initial and final data, and final time!)

I Enables construction of optimal controls for dissipative systems

Further work:

I Differential Lyapunov equation

I It would provides approximation of finite time control Gramians

I Enables construction of optimal controls for non-dissipative systems

Thanks for your attention!
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