Optimal control of non-homogeneous parabolic equations via spectral calculus

L. Grubišić, M. Lazar, I. Nakić, M. Tautenhahn

10 May 2019
Funded by the HRZZ project IP-2016-06-2468

Primjer

$$
\begin{aligned}
& \partial_{\mathrm{t}} y=\frac{1}{c \rho}(\lambda \nabla y)-\frac{\sigma}{c \rho} y \text { na }[0, \infty) \times \Omega, \\
& y(0, \cdot)=u \text { na } \Omega, \\
& \partial_{\nu} y=\chi_{\Gamma} \text { na }[0, \infty) \times \partial \Omega,
\end{aligned}
$$

models cooling of a steel profile with the geometry $\Omega \subset \mathbb{R}^{2}$, where c is the specific heat capacity, ρ is the density, λ is the heat conductivity and σ is the surface conductivity. All parameters are functions of the space variables and constant with respect to the time and χ_{Γ} is the characteristic function of the set $\Gamma \subset \partial \Omega$.

We want to control the system using the function u.

Problem

More precise, we want to solve the following problem:

$$
\min _{u}\left\{J(u):\left\|y_{u}(T)-y^{*}\right\| \leq \epsilon\right\}
$$

where

$$
J(u)=\frac{\alpha}{2}\|u\|^{2}+\frac{1}{2} \int_{0}^{T} \beta(t)\left\|y_{u}(t)-w(t)\right\|^{2} d t
$$

with $\varepsilon>0, \alpha>0, \beta \in L^{\infty}((0, T) ;[0, \infty))$, and $w \in L^{2}((0, T) ; \mathcal{H})$.
ε-neighborhood is needed since otherwise in general we would not have a solution.

Abstract version of the problem

$$
\left\{\begin{array}{l}
y^{\prime}(t)+A y(t)+f=0 \quad \text { za } t \geq 0 \\
y(0)=u
\end{array}\right.
$$

We assume that A is selfadjoint (symmetric) operator.
The solution of the problem is given by the so called Duhamel formula:

$$
y_{u}(t)=S_{t} u+\int_{0}^{t} S_{\tau} f d \tau
$$

where S_{t} is the semigroup generated by the operator $-A$ ($\left.S_{t}=\mathrm{e}^{-A t}\right)$.

Solution

(For now) we will assume $f \in \operatorname{Ran} A+\operatorname{Ker} A$ (which is always a dense set).

Using an idea from Lazar, Molinari, Peypouquet: "Optimal control of parabolic equations by spectral decomposition" (2017), one can solve the problem in a following way:

$$
\hat{y}=(I+\hat{\gamma} B)^{-1}\left(\tilde{y}^{*}+\hat{\gamma} b\right)
$$

where

$$
B=\tilde{\alpha} I+\int_{0}^{T} \beta(t) S_{2 t} d t, \quad b=\int_{0}^{T} \beta(t) S_{T+t} \tilde{W}(t) \mathrm{d} t
$$

and where $\hat{\gamma}>0$ is the unique solution of

$$
G(\gamma):=\left\|\gamma(I+\gamma B)^{-1}\left(B \tilde{y}^{*}-b\right)\right\|=\epsilon .
$$

The function G is increasing.

Solution - implementation I

Let $g(\gamma)=\gamma(I+\gamma B)^{-1}\left(B \tilde{y}^{*}-b\right)$. Then $G(\gamma)=\|g(\gamma)\|$ and $g(\gamma)$ is the solution of the equation

$$
\left(\frac{1}{\gamma}+B\right) x=\left(B \tilde{y}^{*}-b\right) .
$$

We also have a priori estimates $\hat{\gamma}$ hence $\hat{\gamma}$ can be found by the bisection method.

Once we find $\hat{\gamma}$, the solution of the problem is given by

$$
\left(\frac{1}{\hat{\gamma}}+B\right) x=\frac{1}{\hat{\gamma}} \tilde{y}^{*}+b,
$$

Solution - implementation II

How to find (an approximation of) Bi b? Using spectral calculus.

$$
\int_{0}^{T} \beta(t) S_{2 t} y \mathrm{~d} t=\int_{-\infty}^{\infty} \int_{0}^{T} \beta(t) \exp (-2 t \lambda) \mathrm{d} t \mathrm{~d}(E(\lambda) y)=\tilde{\beta}_{0}(A) y
$$

where $\tilde{\beta}_{0}(\lambda)=\int_{0}^{T} \beta(t) \exp (-2 t \lambda) \mathrm{d} t$ and E is the sopectral function of A.

The vector b can be approximated by

$$
\tilde{b}=\sum_{i=1}^{N} \tilde{\beta}_{i}(A) w_{i}, \text { where } \tilde{\beta}_{i}(\lambda)=\int_{t_{i-1}}^{t_{i}} \beta(t) \exp (-(T+t) \lambda) \mathrm{d} t
$$

if we approximate \tilde{W} by $\sum_{i=1}^{N} w_{i} \chi_{\left[t_{i-1}, t_{i}\right]}$.

Solution - numerical implementation

Operator B and vector b, i.e.. their approximations are calculated using functional calculus via quadrature rules (operator functions are represented as line integrals of functions of the form "scalar function" $\times(\lambda I-A)^{-1}$.

No knowledge of the spectrum of A is necessary!
So far we have implemented a toy 1D example of a non-homogeneous diffusion operator. Looks promising.

