Future Research Avenues for Hybrid Systems with Memory

Domagoj Tolić

RIT Croatia, Dubrovnik

5th ConDyS Meeting, Osijek May 10-11, 2019

Outline

Introduction

- Motivation
- Preliminaries

Problem Statement

- Rewriting Dynamics
- 3

Methodology

- Assumptions
- Main Result

Example

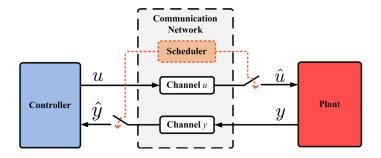
From Analog to Digital and Networked World

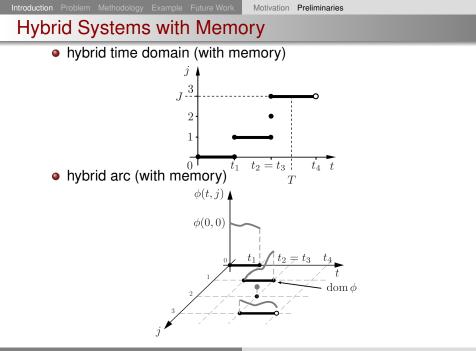
- many processes exhibit both continuous and discrete dynamics – hybrid dynamics¹
- colliding rigid bodies and electrical circuits with active components
- **digital technology** for monitoring and controlling purposes
- communication/measuring devices, sampling units and logic devices
- delays in control processes per se and owing to digital technology

¹Rafal Goebel, Ricardo G. Sanfelice, and Andrew R. Teel. *Hybrid Dynamical Systems: Modeling, Stability, and Robustness.* Princeton University Press, 2012.

Motivation Preliminaries

Real-Life Control System





ntroduction Problem Methodology Example Future Work Motivation Preliminaries

Hybrid Systems with Memory

- given d ≥ 0, we use M^d to denote the collection of hybrid memory arcs φ satisfying s ≥ −d for all (s, k) ∈ dom φ
- system state $x_t : \operatorname{dom}_{\geq 0}(x) \to \mathcal{M}^d$ defined by

$$x_t(s,k(s)) := x(t+s,j+k(s))$$

for all $(s, k(s)) \in \text{dom } x_t$, where $k(s) := \max\{k : (s, k) \in \text{dom } x_t\}$ and $\text{dom } x_t := \{(s, k) \in \mathbb{R}_{\leq 0} \times \mathbb{Z}_{\leq 0} : (t + s, j + k) \in \text{dom } x, s \in [-d, 0]\}$

• *d* is the maximum value of all delay phenomena in the dynamics

Hybrid Systems with Memory

Definition

A hybrid system with memory *d* is defined by a 4-tuple $\mathcal{H}^d_{\mathcal{M}} = (\mathcal{C}, \mathcal{F}, \mathcal{D}, \mathcal{G})$ as follows:

- a set $C \subset M^d$, called the flow set,
- a function $\mathcal{F}: \mathcal{M}^d \to \mathbb{R}^{n_x}$, called the **flow map**,
- a set $\mathcal{D} \subset \mathcal{M}^d$, called the **jump set**, and
- a function $\mathcal{G}: \mathcal{M}^d \to \mathbb{R}^{n_x}$, called the **jump map**.

²Jun Liu and Andrew R. Teel. "Lyapunov-Based Sufficient Conditions for Stability of Hybrid Systems With Memory". In: *IEEE Trans. on Automatic Control* 61.4 (2016), pp. 1057–1062.

Hybrid Systems with Memory

Definition

A hybrid arc is a **solution** to the hybrid system $\mathcal{H}^d_{\mathcal{M}}$ if the **initial** data $x_0 \in \mathcal{C} \cup \mathcal{D}$ and

(i) for all $j \in \mathbb{Z}_{\geq 0}$ and almost all t such that $(t,j) \in \text{dom}_{\geq 0}(x)$

$$x_t \in \mathcal{C}, \qquad \dot{x}(t,j) = \mathcal{F}(x_t),$$

(ii) for all $(t,j) \in \text{dom}_{\geq 0}(x)$ such that $(t,j+1) \in \text{dom}_{\geq 0}(x)$,

$$x_t \in \mathcal{D}, \qquad x(t,j+1) = \mathcal{G}(x_t).$$

Set pre-UGAS

Definition

Let $W \in \mathbb{R}^{n_x}$ be a **closed set**. The set W is **Uniformly Globally** pre-Asymptotically Stable (UGpAS) for system $\mathcal{H}^d_{\mathcal{M}}$ if there exists a \mathcal{KL} function β such that any solution x to $\mathcal{H}^d_{\mathcal{M}}$ satisfies

$$\|x(t,j)\|_{\mathcal{W}} \leq \beta \Big(\|x_0\|_{\mathcal{W}}, t+j\Big), \qquad \forall (t,j) \in \operatorname{dom}_{\geq 0}(x),$$

where
$$||z||_{\mathcal{W}} := \inf_{y \in \mathcal{W}} ||y - z||$$
 for $z \in \mathbb{R}^{n_x}$ and
 $||\phi||_{\mathcal{W}} := \sup_{\substack{(s,k) \in \text{dom } \phi \\ s \in [-d,0]}} ||\phi(s,k)||_{\mathcal{W}}$ for $\phi \in \mathcal{M}^d$.

ntroduction Problem Methodology Example Future Work Rewriting Dynamics

Stabilizing Transmission Intervals and Delays

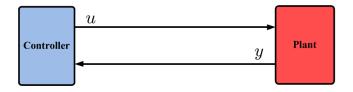
nonlinear delayed plant

$$\begin{aligned} \dot{x}_p &= f_p(t, x_{p_t}, u_t), \\ y &= g_p(t, x_{p_t}), \end{aligned} \tag{1}$$

• nonlinear delayed controller

$$\dot{x}_c = f_c(t, x_{c_t}, y_t),$$

$$u = g_c(t, x_{c_t}),$$
(2)



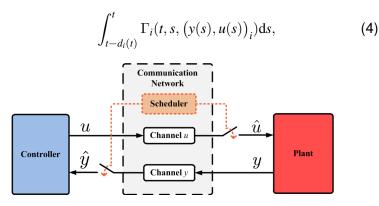
Introduction Problem Methodology Example Future Work Rewriting Dynamics

Introduce Communication Network

• ℓ communication channels with discrete delays

$$(y(t - d_i(t)), u(t - d_i(t)))_i$$
 (3)

or distributed delays



Introduction Problem Methodology Example Future Work

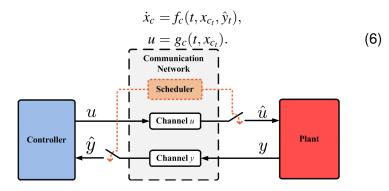
Introduce Communication Network

nonlinear delayed plant

$$\dot{x}_p = f_p(t, x_{p_t}, \hat{u}_t),$$

 $y = g_p(t, x_{p_t}),$ (5)

nonlinear delayed controller



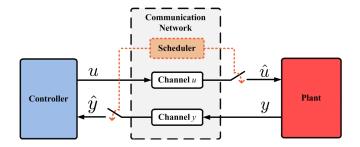
Introduction Problem Methodology Example Future Work Rewriting Dynamics

Stabilizing Transmission Intervals and Delays

define the error vector

$$e(t) = \begin{bmatrix} e_y(t) \\ e_u(t) \end{bmatrix} := \begin{bmatrix} \hat{y}(t) - y^*(t) \\ \hat{u}(t) - u^*(t) \end{bmatrix},$$
(7)

where the components of $(y^*(t), u^*(t))$ are given by (3)-(4)



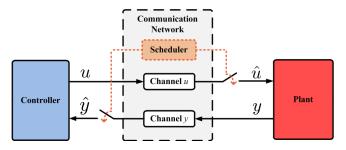
Introduction Problem Methodology Example Future Work Rewriting Dynamics

Stabilizing Transmission Intervals and Delays

• \hat{y} and \hat{u} are updated at instants t_{κ} , $\kappa \in \mathbb{Z}_{\geq 0}$, such that $0 < \epsilon \leq t_{\kappa+1} - t_{\kappa} \leq \tau_{\text{MATI}}$, yielding

$$\hat{y}(t_{\kappa}^{+}) = y^{*}(t_{\kappa}) + h_{y}(\kappa, e(t_{\kappa})),
\hat{u}(t_{\kappa}^{+}) = u^{*}(t_{\kappa}) + h_{u}(\kappa, e(t_{\kappa})),$$
(8)

$$e_i(t_{\kappa}^+) = \mathbf{0}_{n_{e_i}} \tag{9}$$



Hybrid Systems with Memory

altogether:

$$\dot{\xi} = \begin{bmatrix} \dot{x} \\ \dot{e} \\ \dot{\tau}_{1} \\ \dot{\kappa} \\ \dot{\tau}_{2} \end{bmatrix} = \begin{bmatrix} f(x_{t}, e_{t}, \tau_{2_{t}}) \\ g(x_{t}, e_{t}, \tau_{2_{t}}) \\ 1 \\ 0 \\ 1 \end{bmatrix} = \mathcal{F}(\xi_{t}), \underbrace{\tau_{1_{t}}(0, 0) \in [0, \tau_{\text{MATI}}]}_{\mathcal{C}},$$

$$(10)$$

$$\xi^{+} = \begin{bmatrix} x^{+} \\ e^{+} \\ \tau^{+}_{1} \\ \kappa^{+} \\ \tau^{+}_{2} \end{bmatrix} = \begin{bmatrix} x_{t}(0, 0) \\ h(\kappa_{t}(0, 0), e_{t}(0, 0)) \\ 0 \\ \kappa_{t}(0, 0) + 1 \\ \tau_{2_{t}}(0, 0) \end{bmatrix} = \mathcal{G}(\xi_{t}), \underbrace{\tau_{1_{t}}(0, 0) \in [\epsilon, \tau_{\text{MATI}}]}_{\mathcal{D}},$$

$$(11)$$

where $\xi := (x, e, \tau_1, \kappa, \tau_2)$

Hybrid Systems with Memory

$$f(x_t, e_t, \tau_{2_t}) \stackrel{(5),(6)}{:=} \begin{bmatrix} f_p(\tau_2, x_{p_t}, \underbrace{g_{c_t}(\tau_2, x_{c_t}) + e_{u_t}}_{=\hat{u}_t \text{ using (6) and (7)}} \\ f_c(\tau_2, x_{c_t}, \underbrace{g_{p_t}(\tau_2, x_{p_t}) + e_{y_t}}_{=\hat{y}_t \text{ using (5) and (7)}} \end{bmatrix}$$
(12)

$$h(\kappa_t(0,0), e_t(0,0)) := \begin{bmatrix} h_y(\kappa_t(0,0), e_t(0,0)) \\ h_u(\kappa_t(0,0), e_t(0,0)) \end{bmatrix}$$
(13)

$$g(x_{t}, e_{t}, \tau_{2_{t}}) \stackrel{(7)}{:=} \left[\underbrace{\frac{\hat{f}_{p}(\tau_{2}, x_{p_{t}}, x_{c_{t}}, g_{p_{t}}(x_{p_{t}}) + e_{y_{t}}, g_{c_{t}}(x_{c_{t}}) + e_{u_{t}})}_{\text{model-based estimator}} -\dot{y}^{*}(\tau_{2_{t}}(0, 0)) \right]_{\hat{f}_{c}(\tau_{2}, x_{p_{t}}, x_{c_{t}}, g_{p_{t}}(x_{p_{t}}) + e_{y_{t}}, g_{c_{t}}(x_{c_{t}}) + e_{u_{t}})} - \dot{u}^{*}(\tau_{2_{t}}(0, 0)) \right]$$

$$(14)$$

Introduction Problem Methodology Example Future Work

Rewriting Dynamics

Stabilizing Transmission Intervals and Delays

Problem

Find τ_{MATI} that renders the set { $(x, e, \tau_1, \kappa, \tau_2) : x = \mathbf{0}_{n_x}, e = \mathbf{0}_{n_e}$ } UGpAS for the closed-loop hybrid dynamics with memory (10)-(11).

Definition

The **protocol** given by $h := (h_y, h_u)$ is **UGES** if there exist a function $W : \mathbb{Z}_{\geq 0} \times \mathbb{R}^{n_e} \to \mathbb{R}_{\geq 0}$ that is locally Lipschitz in its second argument, real number $\rho \in [0, 1)$ and functions $\underline{\alpha}$, $\overline{\alpha} \in \mathcal{K}_{\infty}$ such that the following holds for all $\kappa \in \mathbb{Z}_{\geq 0}$ and $e \in \mathbb{R}^{n_e}$:

$$\underline{\alpha}(\|e\|) \le W(\kappa, e) \le \overline{\alpha}(\|e\|), \tag{15}$$

$$W(\kappa + 1, h(\kappa, e)) \le \rho W(\kappa, e), \tag{16}$$

Common UGES protocols are Round Robin (RR) and Try Once Discard (TOD).

Assumption

There exist a locally Lipschitz Lyapunov-Krasovskii functional $V : \mathcal{M}_{n_x}^d \to \mathbb{R}_{\geq 0}$, a continuous functional $H : \mathcal{M}_{n_x}^d \to \mathbb{R}_{\geq 0}$, real numbers $L_i, J_j \geq 0$, and a continuous positive-definite function $\varrho : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ such that:

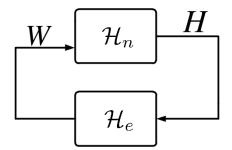
(i) for all $e \in \mathbb{R}^{n_e}$, $\kappa \in \mathbb{Z}_{\geq 0}$, and $x_t \in \mathcal{M}^d_{n_x}$ the inequality

$$\dot{V}(x_t, \dot{x}_t) \le -\varrho(\|x_t(0, 0)\|) - H^2(x_t) + \gamma^2 W^2(\kappa, e)$$
(17)

holds almost everywhere along the solutions of the nominal system \mathcal{H}_n , and

(ii) for all nonnegative hybrid memory arcs $\kappa_t \in \mathcal{M}_{n_\kappa}^d$, all $x_t \in \mathcal{M}_{n_\kappa}^d$ and $e_t \in \mathcal{M}_{n_e}^d$ the inequality (18) holds almost everywhere along the solutions of the error system \mathcal{H}_e , where $\Delta_i(t)$'s and $\delta_j(t)$'s are differentiable satisfying $\Delta_i(t) < \overline{\Delta}_i$, $|\dot{\Delta}_i(t)| \leq \check{\Delta}_i < 1$, $\delta_j(t) < \overline{\delta}_j$ and $|\dot{\delta}_j(t)| \leq \check{\delta}_j < 1$.

$$\left\langle \frac{\partial W\big(\kappa_t(0,0), e_t(0,0)\big)}{\partial e}, g(x_t, e_t, \tau_{2t}) \right\rangle \leq L_0 W\big(\kappa_t(0,0), e_t(0,0)\big) + \\ + \sum_{i=1}^n L_i W\big(\kappa_t(-\Delta_i(t), k(-\Delta_i(t))), e_t(-\Delta_i(t), k(-\Delta_i(t))\big) + \\ + \sum_{j=1}^m J_j \int_{t-\delta_j(t)}^t W\big(\kappa_t(s, k(s)), e_t(s, k(s))\big) \mathrm{d}s + H(x_t)$$
(18)



Main Result

Theorem

Suppose Assumption 1 is satisfied. In addition, suppose that there exist regular enough function $\psi : [0, \tau_{\text{MATI}}] \rightarrow \mathbb{R}_{>0}$ and constants $p_i, \mu_i, r_i, \nu_j \ge 0$ such that (iii) the inequality

$$\rho^2 \le \frac{\psi(\tau_{\text{MATI}})}{\psi(0)}, \text{ and}$$
(19)

(iv) the matrix inequality (20) with expressions (21)-(23) hold, then the set $W := \{(x, e, \tau_1, \kappa, \tau_2) : x = \mathbf{0}_{n_x}, e = \mathbf{0}_{n_e}\}$ is **UGpAS** for the **closed-loop** system (10)-(11).

Main Result

$$\begin{bmatrix} \psi_{0} & \psi_{L_{1}+L_{0}L_{1}\Xi+r_{1}} & 0 & \cdots & \psi_{L_{n}+L_{0}L_{n}\Xi+r_{n}} & 0 & \psi_{J_{1}+L_{0}J_{1}\Xi} & \cdots & \psi_{J_{m}+L_{0}J_{m}\Xi} & \psi_{+L_{0}\Xi} \\ \psi_{L_{1}+L_{0}L_{1}\Xi+r_{1}} & \psi_{1} & r_{1} & \cdots & L_{1}L_{n}\Xi & 0 & L_{1}J_{1}\Xi & \cdots & L_{1}J_{m}\Xi & L_{1}\Xi \\ 0 & r_{1} & \overline{\psi_{1}} & \cdots & 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \psi_{L_{n}+L_{0}L_{n}\Xi+r_{n}} & L_{1}L_{n}\Xi & 0 & \cdots & \psi_{n} & r_{n} & L_{n}J_{1} & \cdots & L_{n}J_{m} & L_{n}\Xi \\ 0 & 0 & 0 & \cdots & r_{n} & \overline{\psi_{n}} & 0 & \cdots & 0 & 0 \\ \psi_{J_{1}+L_{0}J_{1}\Xi} & L_{1}J_{1}\Xi & 0 & \cdots & L_{n}J_{1} & 0 & \Phi_{1} & \cdots & J_{1}J_{m} & J_{1}\Xi \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \psi_{J_{m}+L_{0}J_{m}\Xi} & L_{1}J_{m}\Xi & 0 & \cdots & L_{n}J_{m} & 0 & J_{1}J_{m} & \cdots & \Phi_{m} & J_{m}\Xi \\ \psi_{+L_{0}\Xi} & L_{1}\Xi & 0 & \cdots & L_{n}\Xi & 0 & J_{1}\Xi & \cdots & J_{m}\Xi & -1+\Xi \end{bmatrix}$$

$$(20)$$

$$\psi_{0} = \gamma^{2} + 2\psi L_{0} + \dot{\psi} + \sum_{i=1}^{n} (p_{i} + \mu_{i} + r_{i}\overline{\Delta}_{i}^{2} - r_{i}) + \sum_{j=1}^{m} \nu_{j}\overline{\delta}_{j}^{2}, \quad (21)$$

$$\psi_{i} = -2r_{i} + L_{i}^{2}\Xi - \mu_{i}(1 - \breve{\Delta}_{i}) \quad (22)$$

$$\overline{\psi}_{i} = -p_{i} - r_{i}, \quad \Phi_{j} = -\nu_{j}(1 - \breve{\delta}_{j}) + J_{j}^{2}\Xi, \quad \Xi = \sum_{i=1}^{n} \overline{\Delta}_{i}^{2}r_{i} \quad (23)$$

 $\overline{i=1}$

Example

plant with delayed input:

$$\dot{x}_p(t) = A_p x_p(t) + B_p u(t - \delta),$$
 (24a)

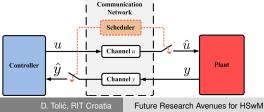
$$y(t) = C_p x_p(t),$$
(24b)

• dynamic output feedback observer-predictor controller:

$$\dot{x}_{c1}(t) = A_c x_{c1}(t) + B_c \Big[e^{A_p \delta} x_{c2}(t) + \int_{t-\delta}^t e^{A_p(t-\theta)} B_p u(\theta) \mathrm{d}\theta \Big], \quad (25a)$$

$$\dot{x}_{c2}(t) = A_p x_{c2}(t) + B_p u(t-\delta) + L[y(t) - C_p x_{c2}(t)], \quad (25b)$$
$$u(t) = C_c x_{c1}(t), \quad (25c)$$

$$u(t) = C_c x_{c1}(t),$$



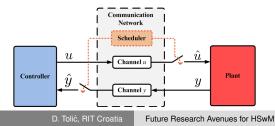
ntroduction Problem Methodology Example Future Work

Communication Network

error vector:

$$e(t) = \begin{bmatrix} e_{y}(t) \\ e_{u}(t) \end{bmatrix} = \begin{bmatrix} \hat{y}(t) - \int_{t-\delta}^{t} y(s) ds \\ \hat{u}(t) - u(t) \end{bmatrix}$$

and $\ell = 2$



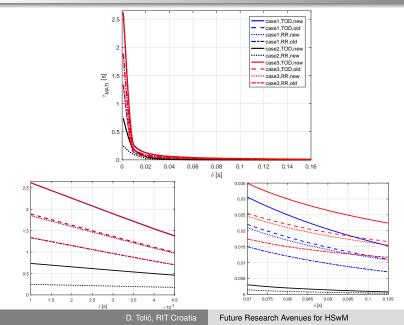
Three Cases

Case 1: u and y in (24a) and (25b), respectively, are replaced with û and ŷ, respectively,

 Case 2: Case 1 together with û instead of u in (25a)-(25b), and

• **Case 3**: Case 2 augmented with the model-based predictor $\dot{\hat{u}} = C_c B_c \int_{t-\delta}^t e^{A_p(t-\theta)} B_p \hat{u}(\theta) d\theta$.

Numerical Results



Future Work

• more generic Lypunov-Krasovskii functionals

• optimal parameters in the presented stability conditions

event- and self-triggering

This work has been supported by Croatian Science Foundation under the project IP-2016-06-2468 "ConDyS".

Questions? Comments? Suggestions?

Questions? Comments? Suggestions?

Thank You for Your attention!!

D. Tolić, RIT Croatia Future Research Avenues for HSwM