Greedy Algorithm for Parameter Dependent Operator Lyapunov Equations

Martin Lazar, Jerome Weston University of Dubrovnik

May 11, 2019

2 Framework

- Greedy Algorithm
- 4 Residual Analysis

5 Examples

Consider a family of parameter-dependent linear control problems

$$\begin{cases} \frac{d}{dt}x_{\nu}(t) = A_{\nu}x_{\nu}(t) + B_{\nu}u_{\nu}(t), & 0 \le t \le T \\ x_{\nu}(0) = x_{0,\nu} \end{cases}$$
(1)

where

- $A_{\nu}: D(A_{\nu}) \subset X \to X.$
- $B_{\nu}: U \rightarrow X_{-1}$.
- Parameter $\nu \in \mathcal{N} \subset \mathbb{R}^n$ and \mathcal{N} is compact.

Consider a family of parameter-dependent linear control problems

$$\begin{cases} \frac{d}{dt}x_{\nu}(t) = A_{\nu}x_{\nu}(t) + B_{\nu}u_{\nu}(t), & 0 \le t \le T \\ x_{\nu}(0) = x_{0,\nu} \end{cases}$$
(1)

where

- $A_{\nu}: D(A_{\nu}) \subset X \to X.$
- $B_{\nu}: U \rightarrow X_{-1}$.
- Parameter $\nu \in \mathcal{N} \subset \mathbb{R}^n$ and \mathcal{N} is compact.

If x_1 is a desired final state, for $\epsilon > 0$, we wish to design u such that $||x_1 - x(T)|| < \epsilon$.

One way to construct *u* in order to achieve this result is to set $u = B^* \phi$, where ϕ is the solution to the adjoint problem

$$\begin{cases} -\frac{d}{dt}\phi(t) = A^*\phi(t), \quad 0 \le t \le T \\ \phi(T) = \phi_0 \end{cases}$$
(2)

where $\phi_{\rm 0}$ is the solution to the following associated optimal control problem

$$\min_{z \in R_T \cap \partial B_{\epsilon}(x^1)} J(z) = \left\{ \frac{1}{2} ||B^*\phi||^2 : \phi(T) = \Lambda_T^{-1}(z - e^{TA}x_0) \right\}.$$
 (3)

We compute Λ_T as

$$\Lambda_T = \int_0^T e^{tA} B B^* e^{tA^*} dt.$$

It is known that for sufficiently large T, the controllability Gramian can be approximated by

$$\Lambda_{\infty} = \int_0^{\infty} e^{tA} B B^* e^{tA^*} dt.$$

This approximation is the solution to the (algebraic) operator Lyapunov equation (OLE)

$$AP + PA^* = -BB^*.$$

We consider the related family of parameter-dependent operator Lyapunov equations (OLE)

$$A_
u P_
u + P_
u A^*_
u = -B_
u B_
u$$

and we wish to establish an efficient greedy algorithm for constructing an approximate controllability Gramian to use to build the necessary optimal control. For Hilbert space X and unbounded linear operator A let X_1 be the D(A) equipped with the norm

$$||\mathbf{x}||_1 = ||(\beta I - \mathbf{A})\mathbf{x}||, \quad \mathbf{x} \in D(\mathbf{A}), \beta \in \rho(\mathbf{A})$$

and X_{-1} be X completed with the norm

$$||x||_{-1} = ||(\beta I - A)^{-1}x||, \quad x \in X, \beta \in \rho(A).$$

Similar spaces X_1^d and X_{-1}^d can be made by replacing *A* with its adjoint.

Framework: Assumptions on $\mathcal{A} = \{A_{\nu}\}, \ \mathcal{A}^* = \{A_{\nu}^*\}$

For each operator A_{ν} :

- A_{ν} is closed.
- A_{ν} is stable.
- A_{ν} is sectorial, i.e. there exists constants $\omega < 0, \ \theta \in (\frac{\pi}{2}, \pi), \ M > 0$ such that

$$\begin{cases} \rho(\boldsymbol{A}_{\nu}) \supset \boldsymbol{S}_{\theta,\omega} = \{\lambda \in \mathbb{C} : \lambda \neq \omega, |\arg(\lambda - \omega)| < \theta\}, \\ \\ ||(\lambda I - \boldsymbol{A}_{\nu})^{-1}||_{\mathcal{L}(\boldsymbol{X})} \leq \frac{M}{|\lambda - \omega|}, \ \forall \lambda \in \boldsymbol{S}_{\theta,\omega}. \end{cases}$$

- $D(A_{\nu})$ is dense in X.
- $D(A_{\nu_1}) = D(A_{\nu_2})$ and $D(A_{\nu_1}^*) = D(A_{\nu_2}^*)$ for $\nu_1, \nu_2 \in \mathcal{N}$.

For semigroup $\mathbb{T} = \{e^{tA_{\nu}}\}_{t \geq 0}$

- $\bullet~\mathbb{T}$ is strongly continuous.
- \mathbb{T} is strongly stable.
- $\ensuremath{\mathbb{T}}$ is an analytic semigroup.

Each operator B_{ν} is an infinite-time admissible control operator for semigroup \mathbb{T} , i.e. for every $u \in L^2([0,\infty), U)$, the mapping $\tau \to \Phi_{\tau} u$ is bounded in *X*. The map Φ is defined as

$$\Phi_{\tau} u := \int_0^{\tau} \mathbb{T}_t B_{\nu} u(t) dt.$$

Framework: Sufficient Conditions

Theorem

Let \mathbb{T} be a strongly continuous semigroup on the Hilbert space *X*, with generator *A*. Then the following statements are equivalent:

- B is an infinite-time admissible control operator for \mathbb{T} .
- There exists an operator $P \in \mathcal{L}(X)$ such that for any $x \in X_1^d$,

$$Px = \lim_{\tau \to \infty} \int_0^\tau \mathbb{T}_t BB^* \mathbb{T}_t^* x dt.$$

 There exist operators Π ∈ L(X), Π ≥ 0, which satisfies (OLE) with BB*, AΠ + ΠA* ∈ L(X^d₁, X₋₁).

Moreover, if (1) holds and \mathbb{T}^* is strongly stable, then P is the unique self-adjoint solution of (OLE)

Algorithm 1 (Weak) Greedy Algorithm

Initialize: Fix a constant $\gamma \in (0, 1]$ and $\epsilon > 0$; 1: In the first step, choose $P_1 \in \mathcal{P}$ such that

$$||\boldsymbol{P}_1||_{\mathbb{P}} \geq \gamma \max_{\boldsymbol{P} \in \mathcal{P}} ||\boldsymbol{P}||_{\mathbb{P}}.$$

2: At the general step, having found P_1, \dots, P_k , denote

$$\mathcal{P}_k = \operatorname{span}\{P_1, \cdots, P_k\} \text{ and } \sigma_k(\mathcal{P}) := \max_{P \in \mathcal{P}} \operatorname{dist}(P, \mathcal{P}_k);$$

3: repeat

4: choose P_{k+1} such that

$$dist(P_{k+1}, \mathcal{P}_k) \geq \gamma \sigma_k(\mathcal{P});$$

5: **until** $\sigma_k(\mathcal{P}) < \epsilon$; 11/21

Fix the approximation error $\epsilon > 0$.

 STEP 1: (discretization) Choose a finite subset *Ñ* such that for all *ν* ∈ *N*,

 $\mathsf{dist}(\nu,\tilde{\mathcal{N}}) < \delta$

where $\delta > 0$.

• STEP 2: Choosing ν_1 Choose $\nu_1 \in \tilde{\mathcal{N}}$ in some manner. Compute P_1 as the solution of (OLE) corresponding to $\nu = \nu_1$

Greedy Algorithm: Offline

 STEP 3: Choosing ν_{j+1} Suppose the last chosen parameter is ν_j. Calculate R_ν(P_j) = L_{A_ν}(P_j) + B_νB^{*}_ν for each ν ∈ Ñ. Check the inequality

$$\max_{\nu \in \tilde{\mathcal{N}}} \inf_{\textit{P} \in \mathcal{P}_{j}} ||\textit{R}_{\nu}(\textit{P})||_{\textit{op}} < \frac{\epsilon}{2}$$

where $\mathcal{P}_j = \text{span}\{P_1, \cdots, P_j\}$. If the inequality is satisfied, stop the algorithm. Else, determine ν_{j+1} as

$$u_{j+1} \in rg\max_{\nu \in \tilde{\mathcal{N}}} \inf_{P \in \mathcal{P}_j} ||R_{\nu}(P)||_{op}.$$

Find the solution to OLE $P_{\nu_{i+1}}$ and repeat Step 3.

Parameter value $\nu \in \mathcal{K}$ is given.

- STEP 1: Project −B_νB^{*}_ν to L_{A_ν}(P_k) := span {L_{A_ν}(P_j)}ⁿ_{j=1} and denote the projection by Π_l(−B_νB^{*}_ν).
- STEP 2: Solve for α_j

$$\Pi_{I}(-B_{\nu}B_{\nu}^{*})=\Sigma\alpha_{j}L_{A_{\nu}}(P_{j})$$

• STEP 3: Define approximating Gramian operator as

$$\Lambda_{\nu,a} := \Sigma \alpha_j P_j$$

We can easily show that $R_{\nu}(P_j) \in \mathcal{L}(X_{1,\nu}^d, X_{-1,\nu})$ for each ν . Note that

$$||R_{\nu}(P)||_{op} = \sup\{||R_{\nu}(P)z||_{-1,\nu}: ||z||_{1d,\nu} = 1, \ z \in X^{d}_{1,\nu}\}.$$

As mentioned previously, the domains of all operators in \mathcal{A}^* are the same. Thus X_{1,ν_1}^d and X_{1,ν_2}^d differ only with respect to their norms.

If the respective norms are equivalent, we drop parameter dependence on $\mathcal{L}(X_{1,\nu}^d, X_{-1,\nu})$

$$\begin{split} \frac{\partial}{\partial t} z - \Delta_{\nu} z &= 0 & \text{in} \quad (0,1)^2 \times (0,T), \\ z(x,t) &= v_0(x,t), & \text{for} \quad x \in \partial([0,1]^2) \\ z(x,0) &= z_0(x) \end{split} \tag{4}$$

$$\Delta_{\nu} &= \frac{\partial^2}{\partial x_1^2} + (1+\nu) \frac{\partial^2}{\partial x_2^2}, \quad \nu \in \mathcal{N} = [0,1]$$

What we refer to as "right-boundary" is the set $\partial_R = \{(x_1, x_2) \in \partial([0, 1]^2) : x_1 = 1\}.$

Take

$$v_0(x,t) = \left\{ egin{array}{cc} u_
u(t), & x \in \partial_R \ 0, & ext{otherwise} \end{array}
ight.$$

We aim to control the system to final state $z_1 = \sin(\pi x_1) * \sin(\pi x_2)$ in time T = 1 with $\nu = 0.1$. The greedy algorithm has been applied for the discretized system of dimension N = 400 with $\epsilon = 0.2$, and the uniform discretization of \mathcal{N} in k = 41.

Example 1: Plots

$$\begin{cases} \frac{\partial^2}{\partial t^2} z - c^2 \frac{\partial^2}{\partial x^2} z = -\beta \frac{\partial}{\partial t} z & \text{in} \quad (0,1) \times (0,T), \\ z(0,t) = v_0(t), & z(1,t) = v_1(t) \\ z(x,0) = z_0(x), & z_t(x,0) = z_{0*}(x). \end{cases}$$
(5)

Take $v_0(t) = 0$ and allow $v_1(t) = u_{\nu}(t)$ to be our right-boundary control with final state $z_1 = \sin(\pi x)$ in time T = 30 with $\nu = (2, 0.4)$. Here N = 40 with $\epsilon = 0.01$, and the discretization of \mathcal{N} in k = 1200.

Example 2: Plots

