’:

¢

{

Greedy Algorithm for Parameter Dependent

Operator Lyapunov Equations

Martin Lazar, Jerome Weston
University of Dubrovnik

May 11, 2019

énDyS




Table of Contents

0 Background
e Framework
e Greedy Algorithm
e Residual Analysis

e Examples

e Discussion



Background and Motivation

Consider a family of parameter-dependent linear control
problems

{gtxy(t) = Ax()+Bu(t), 0<t<T )

Xl/(o) = Xouv
where
e A :D(A) CX— X.
e B, :U— X_4.

e Parameter v € N C R” and N is compact.



Background and Motivation

Consider a family of parameter-dependent linear control
problems

{gtxy(t) = Ax()+Bu(t), 0<t<T )

Xl/(o) = Xouv
where
e A :D(A) CX— X.
e B, :U— X_4.

e Parameter v € N C R” and N is compact.

If x4 is a desired final state, for e > 0, we wish to design u such
that |[x; — x(T)|| < e.



Background and Motivation

One way to construct u in order to achieve this result is to set
u = B*¢, where ¢ is the solution to the adjoint problem

—go(t) = A1), 0<t<T 2)
o(T) = do

where ¢ is the solution to the following associated optimal
control problem

, AT A1, TA
i @) = { 1B (T = A (2 - )} (3



Background and Motivation

We compute At as
T *
Ar = / e BB e dt.
0

It is known that for sufficiently large T, the controllability
Gramian can be approximated by

Ao = / eABB* e dt.
0

This approximation is the solution to the (algebraic) operator
Lyapunov equation (OLE)

AP + PA* = —BB*.



Background and Motivation

We consider the related family of parameter-dependent operator
Lyapunov equations (OLE)

AP, + PA,=—-B,B,

and we wish to establish an efficient greedy algorithm for
constructing an approximate controllability Gramian to use to
build the necessary optimal control.



Framework: Required Spaces

For Hilbert space X and unbounded linear operator A let Xy be
the D(A) equipped with the norm

x|l = (Bl = A)x]|, x € D(A), B € p(A)
and X_1 be X completed with the norm
Ix[l-1 = [[(BI=A) x|, xeX,5¢€pA).

Similar spaces X1d and Xf’1 can be made by replacing A with its
adjoint.



Framework: Assumptionson A = {A,}, A" ={A:}

For each operator A,:

A, is closed.
A, is stable.

A, is sectorial, i.e. there exists constants
w<0,6ec(5,m), M> 0 such that

{ p(Au) ) S@,w = {A eC:A 7& w, ‘arg(A - w)| < 9}7

I = A) e < iy YA € S

D(A,) is dense in X.
D(A,,) = D(A,,) and D(A;,) = D(A;,) for vy, v2 € N.



Framework: Consequences

For semigroup T = {e"} 1~
e T is strongly continuous.
e T is strongly stable.
e T is an analytic semigroup.



Framework: Assumptions on 5 = {B,}

Each operator B, is an infinite-time admissible control operator
for semigroup T, i.e. for every u € L?([0, 00), U), the mapping
7 — &, uis bounded in X. The map ¢ is defined as

> u ;:/ T,B,u(t)at.
0



Framework: Sufficient Conditions

Let T be a strongly continuous semigroup on the Hilbert space
X, with generator A. Then the following statements are
equivalent:

e B is an infinite-time admissible control operator for T.
e There exists an operator P € L(X) such that for any x € X¢,

Px = lim / T:BB*T; xdft.

T—00 0

e There exist operators I € L(X), N > 0, which satisfies
(OLE) with BB*, AN + NA* € £L(X?, X_4).

Moreover, if (1) holds and T* is strongly stable, then P is the
unique self-adjoint solution of (OLE)




Greedy Algorithm: Outline

Algorithm 1 (Weak) Greedy Algorithm

Initialize: Fix a constanty € (0,1] and e > 0;
1: In the first step, choose P; € P such that

P. > ~vymax || P||p.
| 1Hn»_vP€PII |lp

2: At the general step, having found Py, - - - , Pk, denote
Py =span{Py, -+, P} and ox(P) := rpea% dist(P, Py);
3: repeat
4: choose Px.1 such that
dist(Pky1,Pk) = v ok(P);
5: until o4 (P) < ¢



Greedy Algorithm: Offline

Fix the approximation error ¢ > 0.
e STEP 1: (discretization) Choose a finite subset A/ such that
forall v e NV, )
dist(v,N') < ¢

where § > 0.

e STEP 2: Choosing v
Choose v1 € N in some manner.
Compute P; as the solution of (OLE) corresponding to
V =1



Greedy Algorithm: Offline

e STEP 3: Choosing v} 4
Suppose the last chosen parameter is v;. Calculate
R.(P;) = La,(P}) + B,B;; for each v € N.
Check the inequality

€
max inf ||R, < =
max inf [1R.(P)llop < 5

where P; = span{P;,--- , P;}.
If the inequality is satisfied, stop the algorithm. Else,
determine v, 4 as

vir 1 € argmax inf ||R,(P .
/i1 gyej\"/Per|| v (P)llop

Find the solution to OLE P, , and repeat Step 3.



Greedy Algorithm: Online

Parameter value v € K is given.
e STEP 1: Project —B,Bj to La,(Px) := span {La,(F})}
and denote the projection by ,(—B, B,).
e STEP 2: Solve for o;

N(-B,B}) = XajLa,(Pj)
e STEP 3: Define approximating Gramian operator as

/\V7a = ZOZ]P]



Residual Analysis: The space £(X¢, X 1)

We can easily show that R, (P;) € £L(X{,, X_4,) for each v.
Note that

1R (P)llop = sup{l|R.(P)zl| -1, : |2ll1a,, = 1, 2 € X7, }.

As mentioned previously, the domains of all operators in A* are
the same. Thus X/, and X{,_differ only with respect to their
norms.

If the respective norms are equivalent, we drop parameter
dependence on £(X? , X _1,)

1,00



Example 1: Perturbed 2D Heat Equation

97z N,z=0 in  (0,1)2x(0,7),
z(x, 1) = v(x,t), for x e 9([0,1]?) (4)
z(x,0) = zo(x)

A =2 +(1+0) L, veN=[01]
2

T oox?



Example 1: Perturbed 2D Heat Equation

What we refer to as "right-boundary” is the set
Or ={(x1,x2) € 9([0,1]7) : x4 = 1}.

Take

u,(t), X € OR
vo(x, 1) = { 0,( ) otherwise
We aim to control the system to final state
zy = sin(mxq) x sin(mxz) in time T = 1 with v = 0.1. The greedy
algorithm has been applied for the discretized system of
dimension N = 400 with ¢ = 0.2, and the uniform discretization
of Nin k = 41.



Example 1: Plots




Example 2: 1D Damped Wave Equation

Pz-”Zz=—p%z in (0,1)x(0,T),
{ z(0,t) = vp(1), z(1,8) = vy (1) (5)
z(x,0) = zp(x), Zi(x,0) = zp«(x).

Take vy(t) = 0 and allow v4(t) = u,(t) to be our right-boundary
control with final state zy = sin(7x) in time T = 30 with

v =(2,0.4). Here N = 40 with ¢ = 0.01, and the discretization of
N in k =1200.



Example 2: Plots
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