Greedy Algorithm for Parameter Dependent Operator Lyapunov Equations

Martin Lazar, Jerome Weston University of Dubrovnik

May 11, 2019

Table of Contents

(9) Background
(2) Framework
(3) Greedy Algorithm

4 Residual Analysis
(5) Examples

6 Discussion

Background and Motivation

Consider a family of parameter-dependent linear control problems

$$
\left\{\begin{align*}
\frac{d}{d t} x_{\nu}(t) & =A_{\nu} x_{\nu}(t)+B_{\nu} u_{\nu}(t), \quad 0 \leq t \leq T \tag{1}\\
x_{\nu}(0) & =x_{0, \nu}
\end{align*}\right.
$$

where

- $A_{\nu}: D\left(A_{\nu}\right) \subset X \rightarrow X$.
- $B_{\nu}: U \rightarrow X_{-1}$.
- Parameter $\nu \in \mathcal{N} \subset \mathbb{R}^{n}$ and \mathcal{N} is compact.

Background and Motivation

Consider a family of parameter-dependent linear control problems

$$
\left\{\begin{align*}
\frac{d}{d t} x_{\nu}(t) & =A_{\nu} x_{\nu}(t)+B_{\nu} u_{\nu}(t), \quad 0 \leq t \leq T \tag{1}\\
x_{\nu}(0) & =x_{0, \nu}
\end{align*}\right.
$$

where

- $A_{\nu}: D\left(A_{\nu}\right) \subset X \rightarrow X$.
- $B_{\nu}: U \rightarrow X_{-1}$.
- Parameter $\nu \in \mathcal{N} \subset \mathbb{R}^{n}$ and \mathcal{N} is compact.

If x_{1} is a desired final state, for $\epsilon>0$, we wish to design u such that $\left\|x_{1}-x(T)\right\|<\epsilon$.

Background and Motivation

One way to construct u in order to achieve this result is to set $u=B^{*} \phi$, where ϕ is the solution to the adjoint problem

$$
\left\{\begin{align*}
-\frac{d}{d t} \phi(t) & =A^{*} \phi(t), \quad 0 \leq t \leq T \tag{2}\\
\phi(T) & =\phi_{0}
\end{align*}\right.
$$

where ϕ_{0} is the solution to the following associated optimal control problem

$$
\begin{equation*}
\min _{z \in R_{T} \cap \partial B_{\epsilon}\left(x^{1}\right)} J(z)=\left\{\frac{1}{2}\left\|B^{*} \phi\right\|^{2}: \phi(T)=\Lambda_{T}^{-1}\left(z-e^{T A} x_{0}\right)\right\} . \tag{3}
\end{equation*}
$$

Background and Motivation

We compute Λ_{T} as

$$
\Lambda_{T}=\int_{0}^{T} e^{t A} B B^{*} e^{t A^{*}} d t
$$

It is known that for sufficiently large T, the controllability Gramian can be approximated by

$$
\Lambda_{\infty}=\int_{0}^{\infty} e^{t A} B B^{*} e^{t A^{*}} d t
$$

This approximation is the solution to the (algebraic) operator Lyapunov equation (OLE)

$$
A P+P A^{*}=-B B^{*}
$$

Background and Motivation

We consider the related family of parameter-dependent operator Lyapunov equations (OLE)

$$
A_{\nu} P_{\nu}+P_{\nu} A_{\nu}^{*}=-B_{\nu} B_{\nu}
$$

and we wish to establish an efficient greedy algorithm for constructing an approximate controllability Gramian to use to build the necessary optimal control.

Framework: Required Spaces

For Hilbert space X and unbounded linear operator A let X_{1} be the $D(A)$ equipped with the norm

$$
\|x\|_{1}=\|(\beta I-A) x\|, \quad x \in D(A), \beta \in \rho(A)
$$

and X_{-1} be X completed with the norm

$$
\|x\|_{-1}=\left\|(\beta I-A)^{-1} x\right\|, \quad x \in X, \beta \in \rho(A)
$$

Similar spaces X_{1}^{d} and X_{-1}^{d} can be made by replacing A with its adjoint.

Framework: Assumptions on $\mathcal{A}=\left\{\boldsymbol{A}_{\nu}\right\}, \mathcal{A}^{*}=\left\{\boldsymbol{A}_{\nu}^{*}\right\}$

For each operator A_{ν} :

- A_{ν} is closed.
- A_{ν} is stable.
- A_{ν} is sectorial, i.e. there exists constants
$\omega<0, \theta \in\left(\frac{\pi}{2}, \pi\right), M>0$ such that

$$
\left\{\begin{array}{l}
\rho\left(A_{\nu}\right) \supset S_{\theta, \omega}=\{\lambda \in \mathbb{C}: \lambda \neq \omega,|\arg (\lambda-\omega)|<\theta\}, \\
\left\|\left(\lambda I-A_{\nu}\right)^{-1}\right\|_{\mathcal{L}(X)} \leq \frac{M}{|\lambda-\omega|}, \forall \lambda \in S_{\theta, \omega}
\end{array}\right.
$$

- $D\left(A_{\nu}\right)$ is dense in X.
- $D\left(A_{\nu_{1}}\right)=D\left(A_{\nu_{2}}\right)$ and $D\left(A_{\nu_{1}}^{*}\right)=D\left(A_{\nu_{2}}^{*}\right)$ for $\nu_{1}, \nu_{2} \in \mathcal{N}$.

Framework: Consequences

For semigroup $\mathbb{T}=\left\{e^{t A_{\nu}}\right\}_{t \geq 0}$

- \mathbb{T} is strongly continuous.
- \mathbb{T} is strongly stable.
- \mathbb{T} is an analytic semigroup.

Framework: Assumptions on $\mathcal{B}=\left\{B_{\nu}\right\}$

Each operator B_{ν} is an infinite-time admissible control operator for semigroup \mathbb{T}, i.e. for every $u \in L^{2}([0, \infty), U)$, the mapping $\tau \rightarrow \Phi_{\tau} u$ is bounded in X. The map Φ is defined as

$$
\Phi_{\tau} u:=\int_{0}^{\tau} \mathbb{T}_{t} B_{\nu} u(t) d t
$$

Framework: Sufficient Conditions

Theorem

Let \mathbb{T} be a strongly continuous semigroup on the Hilbert space X, with generator A. Then the following statements are equivalent:

- B is an infinite-time admissible control operator for \mathbb{T}.
- There exists an operator $P \in \mathcal{L}(X)$ such that for any $x \in X_{1}^{d}$,

$$
P x=\lim _{\tau \rightarrow \infty} \int_{0}^{\tau} \mathbb{T}_{t} B B^{*} \mathbb{T}_{t}^{*} x d t
$$

- There exist operators $\Pi \in \mathcal{L}(X), \Pi \geq 0$, which satisfies (OLE) with $B B^{*}, A \Pi+\Pi A^{*} \in \mathcal{L}\left(X_{1}^{d}, X_{-1}\right)$.
Moreover, if (1) holds and \mathbb{T}^{*} is strongly stable, then P is the unique self-adjoint solution of (OLE)

Greedy Algorithm: Outline

Algorithm 1 (Weak) Greedy Algorithm

Initialize: Fix a constant $\gamma \in(0,1]$ and $\epsilon>0$;
1: In the first step, choose $P_{1} \in \mathcal{P}$ such that

$$
\left\|P_{1}\right\| \mathbb{P} \geq \gamma \max _{P \in \mathcal{P}}\|P\|_{\mathbb{P}} .
$$

2: At the general step, having found P_{1}, \cdots, P_{k}, denote

$$
\mathcal{P}_{k}=\operatorname{span}\left\{P_{1}, \cdots, P_{k}\right\} \text { and } \sigma_{k}(\mathcal{P}):=\max _{P \in \mathcal{P}} \operatorname{dist}\left(P, \mathcal{P}_{k}\right) ;
$$

3: repeat
4: choose P_{k+1} such that

$$
\operatorname{dist}\left(P_{k+1}, \mathcal{P}_{k}\right) \geq \gamma \sigma_{k}(\mathcal{P}) ;
$$

5: until $\sigma_{k}(\mathcal{P})<\epsilon$;

Greedy Algorithm: Offline

Fix the approximation error $\epsilon>0$.

- STEP 1: (discretization) Choose a finite subset $\tilde{\mathcal{N}}$ such that for all $\nu \in \mathcal{N}$,

$$
\operatorname{dist}(\nu, \tilde{\mathcal{N}})<\delta
$$

where $\delta>0$.

- STEP 2: Choosing ν_{1}

Choose $\nu_{1} \in \tilde{\mathcal{N}}$ in some manner.
Compute P_{1} as the solution of (OLE) corresponding to
$\nu=\nu_{1}$

Greedy Algorithm: Offline

- STEP 3: Choosing ν_{j+1}

Suppose the last chosen parameter is ν_{j}. Calculate $R_{\nu}\left(P_{j}\right)=L_{A_{\nu}}\left(P_{j}\right)+B_{\nu} B_{\nu}^{*}$ for each $\nu \in \tilde{\mathcal{N}}$.
Check the inequality

$$
\max _{\nu \in \tilde{\mathcal{N}}} \inf _{P \in \mathcal{P}_{j}}\left\|R_{\nu}(P)\right\|_{o p}<\frac{\epsilon}{2}
$$

where $\mathcal{P}_{j}=\operatorname{span}\left\{P_{1}, \cdots, P_{j}\right\}$.
If the inequality is satisfied, stop the algorithm. Else, determine ν_{j+1} as

$$
\nu_{j+1} \in \arg \max _{\nu \in \tilde{\mathcal{N}}} \inf _{P \in \mathcal{P}_{j}}\left\|R_{\nu}(P)\right\|_{\text {op }}
$$

Find the solution to OLE $P_{\nu_{j+1}}$ and repeat Step 3.

Greedy Algorithm: Online

Parameter value $\nu \in \mathcal{K}$ is given.

- STEP 1: Project $-B_{\nu} B_{\nu}^{*}$ to $L_{A_{\nu}}\left(\mathcal{P}_{k}\right):=\operatorname{span}\left\{L_{A_{\nu}}\left(P_{j}\right)\right\}_{j=1}^{n}$ and denote the projection by $\Pi_{l}\left(-B_{\nu} B_{\nu}^{*}\right)$.
- STEP 2: Solve for α_{j}

$$
\Pi_{l}\left(-B_{\nu} B_{\nu}^{*}\right)=\Sigma \alpha_{j} L_{A_{\nu}}\left(P_{j}\right)
$$

- STEP 3: Define approximating Gramian operator as

$$
\Lambda_{\nu, a}:=\Sigma \alpha_{j} P_{j}
$$

Residual Analysis: The space $\mathcal{L}\left(X_{1}^{d}, X_{-1}\right)$

We can easily show that $R_{\nu}\left(P_{j}\right) \in \mathcal{L}\left(X_{1, \nu}^{d}, X_{-1, \nu}\right)$ for each ν. Note that

$$
\left\|R_{\nu}(P)\right\|_{o p}=\sup \left\{\left\|R_{\nu}(P) z\right\|_{-1, \nu}:\|z\|_{1 d, \nu}=1, z \in X_{1, \nu}^{d}\right\}
$$

As mentioned previously, the domains of all operators in \mathcal{A}^{*} are the same. Thus $X_{1, \nu_{1}}^{d}$ and $X_{1, \nu_{2}}^{d}$ differ only with respect to their norms.
If the respective norms are equivalent, we drop parameter dependence on $\mathcal{L}\left(X_{1, \nu}^{d}, X_{-1, \nu}\right)$

Example 1: Perturbed 2D Heat Equation

$$
\begin{align*}
& \frac{\partial}{\partial t} z-\Delta_{\nu} z=0 \quad \text { in } \quad(0,1)^{2} \times(0, T), \\
& z(x, t)=v_{0}(x, t), \quad \text { for } \quad x \in \partial\left([0,1]^{2}\right) \tag{4}\\
& z(x, 0)=z_{0}(x) \\
\Delta_{\nu}= & \frac{\partial^{2}}{\partial x_{1}^{2}}+(1+\nu) \frac{\partial^{2}}{\partial x_{2}^{2}}, \quad \nu \in \mathcal{N}=[0,1]
\end{align*}
$$

Example 1: Perturbed 2D Heat Equation

What we refer to as "right-boundary" is the set
$\partial_{R}=\left\{\left(x_{1}, x_{2}\right) \in \partial\left([0,1]^{2}\right): x_{1}=1\right\}$.
Take

$$
v_{0}(x, t)=\left\{\begin{array}{lr}
u_{\nu}(t), & x \in \partial_{R} \\
0, & \text { otherwise }
\end{array}\right.
$$

We aim to control the system to final state $z_{1}=\sin \left(\pi x_{1}\right) * \sin \left(\pi x_{2}\right)$ in time $T=1$ with $\nu=0.1$. The greedy algorithm has been applied for the discretized system of dimension $N=400$ with $\epsilon=0.2$, and the uniform discretization of \mathcal{N} in $k=41$.

Example 1: Plots

Example 2: 1D Damped Wave Equation

$$
\left\{\begin{array}{rll}
\frac{\partial^{2}}{\partial t^{2}} z-c^{2} \frac{\partial^{2}}{\partial x^{2}} z-\beta \frac{\partial}{\partial t} z & \text { in } & (0,1) \times(0, T), \tag{5}\\
z(0, t)=v_{0}(t), & z(1, t)=v_{1}(t) \\
z(x, 0)=z_{0}(x), & z_{t}(x, 0)=z_{0^{*}}(x) .
\end{array}\right.
$$

Take $v_{0}(t)=0$ and allow $v_{1}(t)=u_{\nu}(t)$ to be our right-boundary control with final state $z_{1}=\sin (\pi x)$ in time $T=30$ with $\nu=(2,0.4)$. Here $N=40$ with $\epsilon=0.01$, and the discretization of \mathcal{N} in $k=1200$.

Example 2: Plots

Discussion

