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Parameter dependent problems

Real life applications (may) depend on a large number of

parameters

examples: thickness, conductivity, density, length,

humidity, pressure, curvature,. . .
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Parameter dependent problems (Cont.)

# When dealing with applications and simulations, we would like

to explore within different parameter configurations.

# From the control point of view, this implies solving a different

problem for each configuration.

# Computationally expensive.

Our goal

Apply greedy theory to have a robust and fast numerical solvers.
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Parameter dependent control problem

Ω ⊂ RN , ω ⊂ Ω.

Consider the system{
−div(a(x, ν)∇y) + c y = χωu in Ω,

y = 0 on ∂Ω,
(1)

◦ ν is a parameter ◦u ∈ L2(ω) is a control ◦ c = c(x) ∈ L∞(Ω)

Optimal control problem (OCPν)

min
u∈L2(ω)

Jν(u) =
1

2
|u|2L2(ω) +

β

2
‖y − yd‖2L2(Ω),

3



Parameter dependent control problem (cont.)

Optimal control problem (OCPν)

min
u∈L2(ω)

Jν(u) =
1

2
|u|2L2(ω) +

β

2
‖y − yd‖2L2(Ω),

∃! optimal solution is well-known (Lions, Tröltzsch,. . . )

Characterization: optimal pair (ū, ȳ)

ū = −χω q̄
−div(a(x, ν)∇ȳ) + c ȳ = −χω q̄, in Ω,

−div(a(x, ν)∇q̄) + c q̄ = β (ȳ − yd), in Ω,

ȳ = q̄ = 0, on ∂Ω.

(2)

As the state y depends on ν, also the control u depends on ν.
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Parameter dependent control problem (cont.)

{
−div(a(x, ν)∇y) + c y = χωu in Ω,

y = 0 on ∂Ω,

From the practical point of view,

# Measure parameter ν and determine uν

min
u∈L2(ω)

Jν(u) =
1

2
|u|2L2(ω) +

β

2
‖y − yd‖2L2(Ω),

using classical methods (iterative methods, . . . )

# Repeat the process for each new value of ν.

Can we do it better?
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Greedy control

Assume that ν ranges within a compact set K ⊂ Rd and aν = a(x, ν) are

bounded functions satysfing

0 < a1 ≤ aν ≤ a2, ν ∈ K.

In this way, we ensure that each control can be uniquely determined by

ūν = −χω q̄

where (ȳ, q̄) solve the optimality system (14). Consider the set of

controls ūν for each possible value ν ∈ K. That is,

Ū = {ūν : ν ∈ K}

The idea

To determine a finite number of values of ν that yield the best possible

approximation of the control manifold Ū
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Description of the method

We look for a small number of parameters ν ∈ K approximating the

manifold Ū in the sense of the Kolmogorov width. Roughly, the

Kolmogorov width measures how well we can approximate Ū by a finite

dimensional space.

In order to achieve this goal we rely on greedy algorithms and reduced

bases methods for parameter dependent PDEs or abstract equations in

Banach spaces.

A.Cohen, R.DeVore, Kolmogorov widths under holomorphic

mappings, IMA Journal on Numerical Analysis, to appear

A.Cohen, R.DeVore, Approximation of high-dimensional

parametric PDEs, arXiv preprint, 2015.

Y.Maday, O.Mula, A.T. Patera, M.Yano, The generalized

Empirical Interpolation Method: stability theory on Hilbert spaces

with an application to the Stokes equation, submitted
7



The pure greedy method

X – a Banach space K ⊂ X – a compact subset.

The method approximates K by a a series of finite dimensional

linear spaces Vn (a linear method).

The algorithm

The first step Choose x1 ∈ K such that

‖x1‖X = max
x∈K
‖x‖X .

The general step Having found x1..xn, denote Vn = span{x1, . . . , xn}.
Choose the next element

xn+1 := arg max
x∈K

dist(x, Vn) . (3)

The algorithm stops when σn(K) := maxx∈K dist(x, Vn) be-

comes less than the given tolerance ε.
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The greedy idea

Which one you are going to choose?

Sometimes it is hard to solve the maximisation problem (3).
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The weak greedy method

– a relaxed version of the pure one.

The algorithm

Fix a constant γ ∈ 〈0, 1].

The first step Choose x1 ∈ K such that

‖x1‖X≥ γmax
x∈K
‖x‖X .

The general step

Having found x1..xn, denote Vn = span{x1, . . . , xn}.
Choose the next element

dist(xn+1, Vn)≥ γ max
x∈K

dist(x, Vn) . (4)

The algorithm stops when σn(K) := maxx∈K dist(x, Vn) be-

comes less than the given tolerance ε. 10



Efficiency

In order to estimate the efficiency of the (weak) greedy

algorithm we compare its approximation rates σn(K) with the

best possible one.

The Kolmogorov n width, dn(K)

– measures how well K can be approximated by a subspace in X

of a fixed dimension n.

dn(K) := inf
dimY=n

sup
x∈K

inf
y∈Y
‖x− y‖X .

Thus dn(K) represents optimal approximation performance that

can be obtained by a n-dimensional linear space.

The greedy approximation rates have same decay as the

Kolmogorov widths.

Theorem

(Cohen, DeVore ’15) 3

For any α > 0, C0 > 0

dn(K) ≤ C0n
−α =⇒ σn(K) ≤ C1n

−α, k ∈ N,

where C1 := C1(α,C0, γ).

3A.Cohen, R.DeVore, Approximation of high-dimensional

parametric PDEs, Acta Numerica, 24 (2015) 1–159.
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Performance obstacles

# The set K in general consists of infinitely many vectors.

Finite discretisation of K.

# In practical implementations the set K is often unknown (e.g.

it represents the family of solutions to parameter dependent

problems).

One uses some surrogate value replacing the exact distance

appearing in (4) by some uniformly equivalent term.

Practical realisation depends crucially on an

existence of an appropriate surrogate .
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The vectors chosen by the greedy procedure are the snapshots.

Their computation can be time

consuming and computational

expensive (offline part).

Los Alamos National Laboratory

Once having chosen the snapshots,

one should easily approximate any

value x ∈ K (online part).
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The surrogate

In practical implementations, the set Ū is unknown.

Given two parameters ν1 and ν2, how can we measure the distance

between ūν1 and ūν2?

Recall that we want to avoid to compute ūν .

Standard residual: Suppose that we have computed uν1

|uν1 − uν2 | ∼ |∇Jν2(uν1)−∇Jν2(uν2)| = ∇Jν2(uν1)

Compute ∇Jν2(uν1) = uν1 + βS∗ν2(Sν2uν1 − yd), where Sν is to

control-to-state operator. This means
−div(aν2∇y) + c y = χωuν1 , in Ω,

−div(aν2∇q) + c q = β (y − yd), in Ω,

y = q = 0, on ∂Ω.

⇒ −χωq = S∗ν2(Sν2uν1−yd)

Solving a cascade system.
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Recall that we want to avoid to compute ūν .

Standard residual: Suppose that we have computed uν1

|uν1 − uν2 | ∼ |∇Jν2(uν1)−∇Jν2(uν2)| = ∇Jν2(uν1)

Compute ∇Jν2(uν1) = uν1 + βS∗ν2(Sν2uν1 − yd), where Sν is to

control-to-state operator. This means
−div(aν2∇y) + c y = χωuν1 , in Ω,

−div(aν2∇q) + c q = β (y − yd), in Ω,

y = q = 0, on ∂Ω.

⇒ −χωq = S∗ν2(Sν2uν1−yd)

Solving a cascade system. 14



Cheaper surrogates

A cheap surrogate: Instead of using ūν and approximate the manifold Ū ,

use the optimal variables (q̄ν , ȳν) and approximate the manifold Q̄ × Ȳ.

Denoting Lνz := −div(aν∇z) + c z, we define

Rν(q, y) :=

(
Lνy + χωq

Lνq − β (y − yd)

)
= Gν(q, y)︸ ︷︷ ︸

linear part ofRν(q,y)

+

(
0

βyd

)
.

With this definition, we are able to compute the following estimates:

c1

(
‖y − ȳν‖H1

0Ω + ‖q − q̄ν‖H1
0 (Ω)

)
≤ ‖Rν(q, y)‖H−1(Ω),

‖Rν(p, y)‖H−1Ω ≤ (1 + α2)(‖y − ȳν‖H1
0 (Ω) + ‖q − q̄ν‖H1

0 (Ω)).

where c1 and α2 only depending on a1, a2 and ‖c‖∞.

Upper and lower bounds for Rν(q, y) are essential for the proof of greedy

algorithms in terms of the Kolmogorov width.
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Main results

Rν(q, y) :=

(
Lνy + χωq

Lνq − β (y − yd)

)
. (5)

Theorem 1 (H. Santmaria, L., Zuazua, ’17)

The residual (5) provides the approximation estimates for optimal

controls and states

• ‖u?ν − ūν‖L2(Ω) ≤
1

c1
‖Rν(q, y)‖[H−1(Ω)]2 ,

• ‖y?ν − ȳν‖H1
0 (Ω) ≤

(
1

α1c1

)
‖Rν(q, y)‖[H−1(Ω)]2 ,

where c1 and α1 only depend on a1, a2 and ‖c‖∞.
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Offline algorithm

Step 1: Initialization. Fix ε > 0. Choose any ν ∈ K, ν = ν1 and

compute the minimizer of Jν1 . This leads to

(
q̄ν1
ȳν1

)
.

Step 2: recursive choice of ν.

Assuming we have chosen ν1, . . . , νp, we choose νp+1 as the maximizer of

max
ν∈K
‖ inf

(q,y)∈(Q̄p,Ȳp)
Rν(q, y)‖

Step 3: Stopping criterion. Stop if the max ≤ ε.

Theorem 1 ( H-Santamaria, L., Zuazua, ’17)

The offline algorithm stops after n0(ε) iterations, and fullfills the re-

quirements of the greedy theory.
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Online algorithm

After choosing the most representative values of ν, we can

construct an approximated optimal control u?ν for any arbitrary

given value ν ∈ K by taking

u?ν =

k∑
i=1

λiq̄νi |ω

where λi are determined by the projection of the vector

(
0

yd

)
to

the space

span{Gν(q̄ν1 , ȳν1), . . . , Gν(q̄νk , ȳνk)}
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Numerical results



Numerical examples

# Ω = (0, 1)2 in 2-D or Ω = (0, 1) in 1-D.

# Uniform meshes, i.e., meshes with constant discretization

steps in each direction, N = 400.

# We will approximate the operator A = −div(a(x, ν)∇ ·) by

using the standard 5-point discretization.

# Discretize-then-optimize.

# ν ∈ K = [1, 10].

# K sampled in 100 equidistant points.
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Greedy test # 1

◦ a(x, ν) = 1 + ν(x2
1 + x2

2), ◦ c(x) = sin(2πx1) sin(2πx2),

◦ yd = sin(πx1), ◦β = 104, ◦ ε = 0.005

◦ tcheap = 304s, ◦ tstd = 384s

1 3 5 7

2

4

6

8

10

Iteration

ν

(a) Selected ν

2 4 6 8
10−3

10−2

10−1

100

101

102

103

n

σ
n
(Ū

)

(b) Approximation error
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Approximation for ν = π/2

0

1

0

1

0

20

40

60

x1x2

(c) The approximated control

0 1
0

1

ω

x1

x
2

(d) The control set ω

◦ |u?π/2 − ūπ/2|L2(ω) ≈ 1.45× 10−5, tonline = 0.45s, titerative = 6.01s.
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Approximation for ν = π/2 (cont.)

0 1

0

1

x1

x2

0

0.2

0.4
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(e) The controlled state

0

1 0

1

0

0.5

1

x1 x2

(f) The state y?π/2 and the target

function yd (dashed)

◦ |y?π/2 − ȳπ/2|L2(Ω) ≈ 1.15× 10−7
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Connection with the
turnpike problems



Time dependent control problem

Consider
∂ty − div(a(x, ν)∇y) + c y = χωu in Q = Ω× (0, T ),

y = 0 on Σ = ∂Ω× (0, T ),

y(x, 0) = y0(x) in Ω.

(6)

and the control problem

min
u
Jν
T (u) =

1

2

∫ T

0

|u(t)|2L2(ω)dt+
β

2

∫ T

0

‖y(t)− yd‖2L2(Ω)dt.

The optimal solution (uT , yT ) satisfies

‖yT (t)−ȳ‖L2(Ω)+‖uT (t)−ū‖L2(Ω) ≤ K
(
e−µt + e−µ(T−t)

)
, ∀t ∈ [0, T ]

# Exponential convergence of the finite-time horizon control problem

to the steady one as T →∞.
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Greedy test # 2

We consider time-dependent version of the last example.

◦ a(x, ν) = 1 + ν(x2
1 + x2

2), ◦ c(x) = sin(2πx1) sin(2πx2),

◦ yd = sin(πx1), ◦β = 104, ◦ ε = 0.005

◦Ω = (0, 1)2 in 2-D or Ω = (0, 1) in 1-D.

We take initial datum

y0(x) = sin(3πx1) sin(2πx2)
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The case c(x) ≥ 0 (greedy test #2)

u(x, t) = u?π/2(x), y0(x) = sin(3πx1) sin(2πx2)
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