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Problem and assumptions

Main purpose: design and analysis of iterative algorithms for
optimization problems, as

min
x∈C

f (x)

Hypothesis (H):

(H1) C ⊂ H is non-empty, convex and compact (H is Hilbert);

(H2) f : C → R is convex, G-differentiable and ∇f is Lipschitz
continuous (with constant L)

Optimality Condition

Existence (not uniqueness); x̄ is solution iff, for every c ∈ C,

〈−∇f (x̄), c − x̄〉 ≤ 0



Classical approach: projected gradient

For a step-size λ ∈ (0, 2/L), iterate

xk+1 = PC (xk − λ∇f (xk))

Problem: the projection can be computational expansive

Quadratic approximation

xk − λ∇f (xk) = Argminx

{
f (xk) + 〈∇f (xk), x − xk〉+

1

2λ
‖x − xk‖2

}
(Proof...)



Frank-Wolfe: projection-free algorithm

M. Franke and P. Wolfe, An algorithm for quadratic programming.
Naval research logistics quarterly, 1956

M. Jaggi, Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization.
Proceedings on Machine Learning Research, 2013

FW Algorithm:

(LMO) sk ∈ Argmins∈C 〈∇f (xk), s〉;
(Update) xk+1 = xk + γk (sk − xk)

Iterates feasibility

If γk ∈ [0, 1], xk ∈ C; indeed,

xk+1 = (1− γk) xk + γksk



Convex analysis: a refresher

Let f : X → R ∪ {+∞}.

Definition (Subdifferential)
∂f (x) = {x ′ ∈ H : f (y) ≥ f (x) + 〈x ′, y − x〉 ∀y ∈ H}

Definition (Fenchel conjugate)
f ?(x) = maxz {〈x , z〉 − f (z)}

Theorem
If f is proper convex and l.s.c., then

(∂f )−1 = ∂f ?;

moreover, ∂f ?(x) = Argmaxz {〈x , z〉 − f (z)} (Proof...)

Notation: NC := ∂δC (normal cone) and σC := δ?C (support function)



Frank-Wolfe: mimicking the opt cond

- Problem Opt Cond: 0 ∈ ∇f (x̄) +NC(x̄)

- FW Algorithm: 0 ∈ ∇f (xk) +NC(sk)

Equivalently, the LMO reads as

sk ∈ ∂σC (−∇f (xk))

(Proof...)

Remark
FW is an inexact subgradient descent on the dual
=⇒ the step-size γk has to go to zero



Example: norm constraint

C = {x ∈ X : ‖x‖ ≤ t}

Given v ∈ H, the LMO is equivalent to

Argmins∈C 〈v , s〉 = −t ∂‖ · ‖∗ (v)

(Proof...)

Example (`1-norm)

If C is the `1-ball, we obtain the greedy coordinate descent:

ik ∈ Argmaxi |∂i f (xk)|
xk+1 = (1− γk) xk − γkt sign(∂ik f (xk)) eik

(cheaper that projection)



Property: affine invariance

Consider the change of variable x = Bx̃ and h(x̃) = f (Bx̃); then

Argminx∈C f (x) = B [ArgminBx̃∈C h (x̃)]

Starting from x ∈ C,

- Gradient method:

x
(1)
+ = x − λ∇f (x);

x
(2)
+ = x − λBB∗∇f (x);

- FW:

x
(1)
+ = x

(2)
+
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Convergence result (1)

Theorem
Let γk ∈ `2 \ `1. Then limk f (xk) = f (x̄), there exist a
subsequence such that

(0 ≤) f (xkj )− f (x̄) ≤ Γ−1kj
, where Γn =

n∑
i=1

γi

and every weak cluster point is a solution.
In particular, if the solution is unique, xk ⇀ x̄ .



Two lemmas on real sequences

Lemma (Quasi-Fejér monotonicity)

If
rk+1 − rk + ak ≤ zk ∈ `1,

then rk is convergent and ak ∈ `1.

Lemma (Subsequencial rate)

If (γkwk) ∈ `1 and γk /∈ `1, then there exists a subsequence wkj s.t.

wkj ≤ Γ−1kj
, where Γn =

n∑
i=1

γi

If moreover wk − wk+1 ≤ αγk for some α > 0, then lim
k

wk = 0



Quadratic upper bound

Lemma (Descent Lemma)

Let f : C → R be G-differentiable with L-Lipschitz continuous
gradient. Then, for every x and y ∈ H,

f (y) ≤ f (x) + 〈∇f (x), y − x〉+
L

2
‖y − x‖2 (∗)

(Proof...)

Baillon-Haddad Theorem
If f is convexity and differentiable, the following are equivalent:

(i) Descent inequality (∗);

(ii) ∇f is L-Lipschitz continuous;

(iii) ∇f is 1/L cocoercive



Main estimations

Lemma
For the Frank-Wolfe algorithm,

(i) denoting rk := f (xk)− f (x̄),

rk+1 − (1− γk) rk ≤ d2
CLγ

2
k/2;

(ii) denoting M := dC maxx∈C ‖∇f (x)‖,

rk − rk+1 ≤ Mγk

(recall that C is compact and ∇f is continuous)

(Proof...)



Convergence result (2)

Theorem
If γk = 2/(k + 2), then

f (xk)− f (x̄) ≤
2d2
CL

k + 2

(Proof...)



Generalizations

The same proof holds when

(i) linesearch for the step-size (closed-loop choice):

γk ∈ Argminγ∈[0,1] f (xk + γ (sk − xk)) ;

(ii) replace the hypothesis Lipschitz-continuity of ∇f with the
boundedness of the curvature constant:

Cf = sup

{
2

γ2
[f (y)− f (x)− 〈∇f (x), y − x〉]

}
,

taken on γ ∈ (0, 1], x , s ∈ C, y = x + γ (s − x)

Remark
Lipschitz-continuity of ∇f implies Cf ≤ d2

CL (Proof...)



Duality gap

For xk ∈ C (iterate generated by the FW algorithm), define

gap(xk) : = 〈∇f (xk), xk − sk〉
≥ f (xk)− f (x̄)

(Proof...)

Remark
An upper-bound for optimality is available at each iteration
(and similar convergence-rates for gap(xk) hold)
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Problem 2

Now we consider the following problem:

min
x∈C
{f (x) + g (x)}

Hypothesis (H):

(H1) C ⊂ H is non-empty, convex and compact;

(H2) f : C → R is convex, G-differentiable and ∇f is Lipschitz
continuous (with constant L);

(H3) g : C → R ∪ {+∞} is proper, convex and l.s.c. (non diff)
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Moreau-Yosida envelope

Definition

gλ(x) := inf
y

{
g(y) +

1

2λ
‖y − x‖2

}

Motivation: convexification of the dual

gλ = g �

(
1

2λ
‖ · ‖2

)
= g?? �

(
λ

2
‖ · ‖2

)?
=

(
g? +

λ

2
‖ · ‖2

)?
(Proof...)



Proximal-point operator

Definition

proxλg (x) := Argminy

{
g(y) +

1

2λ
‖y − x‖2

}

- Projection generalization: for g = δC , proxλg = PC

Moreau identity

x = proxλg?(x) + λproxλ−1g (λ−1x)

(Proof...)



Differentiability

Theorem
If g? is strongly-convex, then ∇g is Lipschitz-continuous
(in particular, g is differentiable)

Theorem
∇gλ is (1/λ)-Lipschitz continuous with

∇gλ(x) =
x − proxλg (x)

λ

(Proof...)



Other properties

For every x in H, denote

[∂g(x)]0 = Argminy∈∂g(x)‖y‖

i) inf gλ = inf g & Argmin gλ = Argmin g ;

ii) For λ↘ 0+, gλ(x)↗ g(x) with

g(x)− gλ(x) ≤ λ

2
‖ [∂g(x)]0 ‖2;

gλ′(x)− gλ(x) ≤ 1

2

(
λ− λ′

)
‖∇gλ′(x)‖2.

iii) For λ↘ 0+, ∇gλ(x)→ [∂g(x)]0 with

‖∇gλ(x)‖ ↗ ‖ [∂g(x)]0 ‖



Lax-Hopf formula

iv) [
∂

∂λ
gλ(x)

]
λ=λ′

= −1

2
‖∇gλ′(x)‖2 (∗)

Hamilton-Jacobi equation

For H : H → R convex and 1-coercive and g0 : H → R, consider{
∂
∂λg + H (∇xg) = 0 (x , λ) ∈ H × (0,+∞)

g (x , 0) = g0 (x) x ∈ H

The (viscosity) solution is given by the Lax-Hopf formula:

g (x , λ) := inf
y∈H

{
g0(y) + λH?

(
y − x

λ

)}
For H(p) = 1

2‖p‖
2, then H?(p) = 1

2‖p‖
2 and we recover (∗)
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FW + Smoothing

(Smoothing) yk = Argminx

{
g(x) +

1

2λk
‖x − xk‖2

}

(Gradient) vk = ∇f (xk) + (xk − yk) /λk

(LMO) sk ∈ Argmins∈C 〈vk , s〉

(Update) xk+1 = xk + γk (sk − xk)

A. Yurtsever, O. Fercoq, F. Locatello and V. Cevher, A Conditional
Gradient Framework for Composite Convex Minimization.
Proceedings of the 35th Internat Conf on Machine Learning, 2018
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Problem 3

Now we consider the following problem:

min
x∈C
{ f (x) + g (x) : Ax = 0 }

Hypothesis (H):

(H1) C ⊂ H is non-empty, convex and compact;

(H2) f : C → R is convex, G-differentiable and ∇f is Lipschitz
continuous (with constant L);

(H3) g : C → R ∪ {+∞} is proper, convex and l.s.c. (non diff)

(H4) A is linear and continuous

Product-space trick

The linear constraint allows to threat the sum of non-differentiable
functions by separate proximal-point operators



Augmented Lagrangian

To deal with the linear constraint, 3 techniques are available

- Penalization: f (x) + g (x) + ρk‖Ax‖2 with ρk → +∞;

- Lagrangian duality: looking at the saddle-points of

L (x , µ) = f (x) + g (x) + 〈µ, Ax〉;

- Augmented Lagrangian: for fixed ρ > 0,

Ek (x , µ) = f (x) + gλk (x) + 〈µ, Ax〉+
ρ

2
‖Ax‖2



Algorithm

(Smoothing) yk = Argminx

{
g(x) +

1

2λk
‖x − xk‖2

}

(Gradient) vk = ∇f (xk) + (xk − yk) /λk + A∗µk + ρA∗Axk

(LMO) sk ∈ Argmins∈C 〈vk , s〉

(Primal update) xk+1 = xk + γk (sk − xk)

(Dual update) µk+1 = µk + θkAxk

G. Gidel, F. Pedregosa and S. Lacoste-Julien, Frank-Wolfe Splitting via
Augmented Lagrangian Method.
10th NIPS Workshop on Optimization for Machine Learning, 2018



Conclusions: what we have done...

(i) Asymptotic feasibility: Axk → 0 (strongly);

(ii) Lagrangian multiplier boundedness;

(iii) Optimality rates: every weak cluster point of xk is a solution
and µk weakly converges to an optimal dual variable with

lim
k→∞

[L (xk , µ̄)− L (x̄ , µ̄)] = 0

and, subsequentially,

L
(
xkj , µ̄

)
− L (x̄ , µ̄) +

ρ

2
‖Axkj‖

2 ≤ 1

Γkj

A. Silveti-Falls, C. M., J. Fadili, Generalized Conditional
Gradient with Augmented Lagrangian for Composite
Minimization. arxiv.org/abs/1901.01287, 2018
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