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Problem and assumptions

Main purpose: design and analysis of iterative algorithms for
optimization problems, as

in f
e 0

Hypothesis (H):
(H1) C C H is non-empty, convex and compact (H is Hilbert);

(H2) f: C — R is convex, G-differentiable and V£ is Lipschitz
continuous (with constant L)

Optimality Condition

Existence (not uniqueness); X is solution iff, for every c € C,

(=Vf(x), c=x) <0



Classical approach: projected gradient
For a step-size A € (0,2/L), iterate
Xk+1 = PC (Xk - )\Vf(Xk))

Problem: the projection can be computational expansive

Quadratic approximation

1
Xy — )\Vf(xk) = Argmin,, {f(Xk) + <Vf(Xk), X — Xk> + 5HX — Xk||2}

(Proof...)



Frank-Wolfe: projection-free algorithm

@ M. Franke and P. Wolfe, An algorithm for quadratic programming.
Naval research logistics quarterly, 1956

@ M. Jaggi, Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization.
Proceedings on Machine Learning Research, 2013

FW Algorithm:
(LMO) sk € Argmin . (VF(xk), s);
(Update) X1 = Xk + Yk (Sk — Xk)

Iterates feasibility
If Yk € [0, 1], X, € C; indeed,

X1 = (1 = vi) Xk + Yksk



Convex analysis: a refresher
Let f: X — RU {+o0}.
Definition (Subdifferential)
of(x) ={x"eH: fly)=f(x)+ (', y—x) VyeH}

Definition (Fenchel conjugate)
*(x) = max, {{x, z) — f(2)}

Theorem
If f is proper convex and I.s.c., then

(0f) = of~;

moreover, Of*(x) = Argmax, {(x, z) — f(z)}  (Proof...)

Notation: N¢ := dd¢ (normal cone) and o¢ := §¢ (support function)



Frank-Wolfe: mimicking the opt cond

- Problem Opt Cond: 0 € Vf(X) + N¢(X)

- FW Algorithm: 0 € VF(xk) + Ne(sk)

Equivalently, the LMO reads as

Sk € BO'C (—Vf(xk))
(Proof...)
Remark

FW is an inexact subgradient descent on the dual
—> the step-size v, has to go to zero



Example: norm constraint
C={xeX: |x| <t}

Given v € H, the LMO is equivalent to
Argmingce (v, s) = —t 9| - |« (v)
(Proof...)
Example (¢*-norm)
If C is the ¢1-ball, we obtain the greedy coordinate descent:

ix € Argmax; |O0;if (xx)|
X1 = (1= vk) X — vt sign(9;, f(xk)) e,

(cheaper that projection)



Property: affine invariance

Consider the change of variable x = BX and h(X) = f(BX); then

Argmin, cc f (x) = B [Argminggzee h(X)]

Starting from x € C,
- Gradient method:

XJ(rl) =x — AVf(x);
x(f) = x — ABB*Vf(x);

- FW:
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Convergence result (1)

Theorem
Let v, € 2\ ¢*. Then limy f(xx) = f (X), there exist a
subsequence such that

(0<) flxg) —F(X) < Tt where Th=3 7

i=1

and every weak cluster point is a solution.
In particular, if the solution is unique, x, — X.



Two lemmas on real sequences

Lemma (Quasi-Fejér monotonicity)
If
Mgl — e+ ax <z € o,

then ry is convergent and a, € (*.

Lemma (Subsequencial rate)
If (vkwy) € £ and i ¢ 01, then there exists a subsequence w; S.t.

n
wy; < F;jl, where [, = ny,-
i=1

If moreover wy — wyy1 < oy, for some o > 0, then IiIEn we =0



Quadratic upper bound

Lemma (Descent Lemma)

Let f : C — R be G-differentiable with L-Lipschitz continuous
gradient. Then, for every x and y € H,

FY) < F00 4 (V700 y—x) +2lly — <P (+)

(Proof...)

Baillon-Haddad Theorem

If f is convexity and differentiable, the following are equivalent:
(i) Descent inequality (x);

(ii) Vf is L-Lipschitz continuous;

(iii) V£ is 1/L cocoercive



Main estimations

Lemma
For the Frank-Wolfe algorithm,

(i) denoting ri := f(xx) — f(X),
ferr — (1= re < dELoi/2;
(ii) denoting M := dc maxxec [|VF(x)]|,
e — rr1 < Moy

(recall that C is compact and Vf is continuous)

(Proof...)



Convergence result (2)

Theorem
If v =2/(k + 2), then

2d3L
+

flx) = F(x) <

=
N

(Proof...)



Generalizations
The same proof holds when

(i) linesearch for the step-size (closed-loop choice):

Yk € Argmin coq) f (xk + 7 (sk — xk));

(ii) replace the hypothesis Lipschitz-continuity of Vf with the
boundedness of the curvature constant:

Cr = sup {722 [F(y) — f(x) = (VF(x), y — x>]} ,

taken on vy € (0,1], x,s € C, y = x+ (s — x)

Remark
Lipschitz-continuity of Vf implies Cr < d3L (Proof...)



Duality gap

For xx € C (iterate generated by the FW algorithm), define

(Proof...)

Remark
An upper-bound for optimality is available at each iteration
(and similar convergence-rates for gap(xx) hold)
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Problem 2

Now we consider the following problem:
in {f
min {f (x) + & (x)}

Hypothesis (H):
(H1) C C H is non-empty, convex and compact;

(H2) f: C — R is convex, G-differentiable and V£ is Lipschitz
continuous (with constant L);

(H3) g: C — RU {400} is proper, convex and l.s.c. (non diff)
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Moreau-Yosida envelope
Definition

000 =it {e) + 55l — xI2}

Motivation: convexification of the dual

_ 1 2) k& A 2*_*5 2*
o=e0(510 ) =" 0(50112) = (&4 301

(Proof...)



Proximal-point operator

Definition
, 1 9
proxg(x) 1= Argmin,, 1 g(y) + 51 lly — x|
- Projection generalization: for g = dc, prox,, = Pc
Moreau identity

X = Proxyg«(x) + )\prox)\flg()\_lx)

(Proof...)



Differentiability

Theorem
If g* is strongly-convex, then Vg is Lipschitz-continuous
(in particular, g is differentiable)

Theorem
Vg is (1/\)-Lipschitz continuous with

X — proxyg(x)

Vea(x) = 5y

(Proof...)



Other properties
For every x in ‘H, denote
[0g(x)]° = Argmin,cogoll¥ |
i) inf gn=inf g & Argmin gy = Argmin g;
i) For AN, 0T, gx(x)  g(x) with
£0) ~ () < 5 |02 I
£0() ~ £:() < 5 (A= V) [Vav (I
i) For AN\, 0T, Vgy(x) — [0g(x)]® with

IVer()Il /[ 10g(x)]° |



Lax-Hopf formula

iv)
—8 X = —1 A D¢ 2 k
[a)\gx( )L—x 2|!Vgx( )i (*)

Hamilton-Jacobi equation
For H: H — R convex and 1-coercive and go : H — R, consider

{£g+H(VXg):0 (X,)\)EHX (0,+OO)
g (x,0) = go(x) xeHt

The (viscosity) solution is given by the Lax-Hopf formula:

) = ot {at) o (757))

For H(p) = 3||p||, then H*(p) = 3||p||? and we recover ()
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FW + Smoothing

(Smoothing) yx = Argmin, {g( )+ 2/1\ |x — xk\|2}
(Gradient) Vi = Vf(Xk) + (Xk — yk) /)\k
(LMO) sk € Argmingc (vk, s)

(Update) X1 = Xk + Yk (Sk — xx)

@ A. Yurtsever, O. Fercoq, F. Locatello and V. Cevher, A Conditional
Gradient Framework for Composite Convex Minimization.
Proceedings of the 35th Internat Conf on Machine Learning, 2018
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Problem 3

Now we consider the following problem:

mig {f(x)+g(x): Ax=0}

X€

Hypothesis (H):
(H1) C C H is non-empty, convex and compact;

(H2) f: C — R is convex, G-differentiable and V£ is Lipschitz
continuous (with constant L);

(H3) g: C — RU{+o0} is proper, convex and l.s.c. (non diff)
(Hg) Ais linear and continuous

Product-space trick

The linear constraint allows to threat the sum of non-differentiable
functions by separate proximal-point operators



Augmented Lagrangian

To deal with the linear constraint, 3 techniques are available

- Penalization: f (x) 4 g (x) + pk||Ax||? with px — +o0;
- Lagrangian duality: looking at the saddle-points of

L(x,p) = f(x) +g(x)+(u, Ax);

- Augmented Lagrangian: for fixed p > 0,

Ex (o) = £ (x) + &3, () + (. Ax) + EJ|AXIP



Algorithm

1
(Smoothing) yszrgminx{g() o rx—xan}

(Gradient) vk = VF(xk) + (xk — k) /A + A%k + pA* Ax

(LMO) sk € Argmingee (v, S)
(Primal update) Xk+1 = Xk + i (Sk — Xk)
(Dual update) k+1 = pk + O Axy

@ G. Gidel, F. Pedregosa and S. Lacoste-Julien, Frank-Wolfe Splitting via
Augmented Lagrangian Method.
10th NIPS Workshop on Optimization for Machine Learning, 2018



Conclusions: what we have done...

(i) Asymptotic feasibility: Ax, — 0 (strongly);
(ii) Lagrangian multiplier boundedness;

(iii) Optimality rates: every weak cluster point of xj is a solution
and puy weakly converges to an optimal dual variable with

Jim_[£ (3 /) = £(%,2)] = 0

and, subsequentially,

_ _ 1
E(ijhu’) _‘C(Xnu) 7HAXk H2 r
I_

3 A. Silveti-Falls, C. M., J. Fadili, Generalized Conditional
Gradient with Augmented Lagrangian for Composite
Minimization. arxiv.org/abs/1901.01287, 2018
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