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Averaged control

We consider d realisations of a finite dimensional control systems,

ẋi = Aixi +Biu , xi(0) = x0
i i ∈ {1, · · · , d} . (1)

I Ai ∈Mn(R), system dynamics

I Bi ∈Mn,m(R), control operators

I xi(t) ∈ Rn, states

I u(t) ∈ Rm, controls

Definition

The system (1) is controllable in average in some time T > 0 for the
parameters σ1, · · · , σd,

∑
σi = 1 if for every x0

1, · · · , x0
d ∈ Rn and every

x1 ∈ Rn, there exist a control u ∈ L2(0, T )m such that the solution of (1)
satisfies

d∑
i=1

σixi(T ) = x1.
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Averaged control

Theorem 1. (Zuazua 141)

The system (1) is controllable in average if and only if the following rank
condition is satisfied:

rank

[
d∑
i=1

σiA
k
iBi , k ∈ N

]
= n .

Control of each component 6⇒ Averaged control (A2 = −A1)

Averaged control 6⇒ Control of each component

1

E. Zuazua, Averaged Control. Automatica 50(12) (2014) 3077–3087.
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Averaged control

We introduce the notation

Ã =


A1 0 . . . 0

0 A2

. . .
...

...
. . .

. . . 0
0 . . . 0 Ad

 , B̃ =

B1

...
Bd

 , x̃(t) =

x1(t)
...

xd(t)

 ,

L =
(
σ1In . . . σdIn

)
.

The system (1) writes,

˙̃x = Ãx̃+ B̃u, x̃(0) = x̃0.

The average controllability problem is

Lx̃(T ) = 0.

By new notation and Hamilton-Cayley the average control rank condition
reduces to

rank
[
LÃkB̃ , k ∈ {0, · · · , nd− 1}

]
= n.



Long time averaged control

Exact/simultaneous control:

x̃(T ) = 0⇒ x̃(t) = 0, t > T, with u = 0.

Averaged control:

Lx̃(T ) = 0 6⇒ Lx̃(t) = 0, t > T, with u = 0.

(Two systems with different dynamics starting from a same point will produce
different trajectories.)

The problem

Can we find a control u such that Lx̃(t) = 0, t ≥ T ?
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Generalisation of averaged control

L - a general linear operator.

In order to achieve long time control we first have to steer the system in time
T not just to KerL, but to its subspace from which it is possible to stay within
it (controlled invariant subspace).

TASKS:

1. Identify the supremal controlled invariant subspace S ⊆ KerL.

2. Check the conditions under which it is possible to steer the system to S.

3. Construct the optimal long time control.



TASK 1. Construction of the supremal controlled invariant subspace

Consider
ẋ = Ax+Bu, x(0) = x0 (2)

and suppose
Lx(t) = 0, t ≥ 0.

Then
LAx(t) = −LBu(t), t ≥ 0,

and
PLAx(t) = 0, t ≥ 0,

P - the orthogonal projector on Ker(LB)>.

Thus

Lx(t) = 0 ⇐⇒
(

L
PLA

)
x(t) = 0



TASK 1. Construction of the supremal controlled invariant subspace

Algorithm 1

STEP 0: Set L0 = L.
STEP 1: Set Λ0 = P0L0A, where P0 is the orthogonal projector

on Ker(L0B)>.

Define L1 :=

(
L0

Λ0

)
.

STEP k+1: Set Λk = PkLkA, where Pk is the orthogonal projector
on Ker(LkB)>.

Define Lk+1 :=

(
L0

Λk

)
.

The algorithm stops when KerLK+1 = KerLK .

Theorem 2.

KerLK i the supremal invariant subspace of KerL.



TASK 2

Under which conditions we can reach KerLK?

When it is possible to steer the system to Ker Λ, Λ – arbitrary?

Theorem 3. (cf. Kreindler, Sarachik 64)2

For every x0 ∈ Rn and x̄1 ∈ Ran Λ there exists a control u ∈ L2(0, T )m

steering the solution x of

ẋ = Ax+Bu, x(0) = x0

to some x(T ) ∈ Rn such that Λx(T ) = x̄1, if and only if A, B and Λ satisfy:

rank Λ
(
A0B . . . An−1B

)
= rank Λ.

2

Kreindler, E. and Sarachik, P. E., On the concepts of controllability and observability

of linear systems, IEEE Trans. Automatic Control AC-9) (1964) 129–136.



Long time control result

Theorem 4.

For every x0 ∈ Rn there exists a control u ∈ L∞(R+)m such that the solution
to the system

ẋ = Ax+Bu, x(0) = x0

satisfies Lx(t) = 0, t ≥ T if and only if

rankLK
(
A0B . . . An−1B

)
= rankLK ,

where LK is the operator constructed by the Algorithm 1.



TASK 3. Norm optimal controls

THE AIM

– given two positive times T0 and T1,
– given initial condition x0 ∈ Rn,
– given an operator L ∈Mq,n(R)
– find the control of minimal L2 norm such that the solution x of (2) satisfies

Lx(t) = 0, t ∈ [T0, T0 + T1] .

J0(x1) — the minimal control norm steering x0 to x1 in time T0

J1(x1) — the minimal control norm keeping the solution within KerL for
t ∈ [T0, T0 + T1].

We have to minimise J0 + J1 over x1 ∈ KerLK ∩RT0(x0).

RT0(x0) – the set of reachable points from x0 in time T0 > 0.



J0(x
1) – minimal norm steering the system to x1

The minimal norm control steering the system to x1 is

u(t) = B>e(T0−t)A>
QT0

(
x1 − eT0Ax0

)
,

where QT0 is the inverse of the Gramian ΓT0 :

QT0ΓT0p
1 = p1, p1 ∈ Ran ΓT0 .

(We do not assume controllability of (A,B)).
Minimal norm is

J0(x1;T0) := ‖u‖2L2(0,T0) =
(
x1 − eT0Ax0

)>
QT0

(
x1 − eT0Ax0

)
.



J1(x
1) – minimal norm keeping the solution within KerL

Decompose

u(t) = u0(t) + (LB)>v0(t), u0(t) ∈ KerLB.

Lx = const implies
−LAx = (LB)(LB)>v0.

Consequently,
v0(x) = −MLAx,

where M is the inverse of (LB)(LB)>:

M(LB)(LB)>w = w, w ∈ RanLB.

It remains to detect u0.



J1(x
1) – minimal norm keeping the solution within KerL

We show
u0 = KB>E(t),

where E ∈Mn(R) is solution of the backward Riccati equation:

Ė = (LA)>MLA−
(
A−B(LB)>MLA

)>
E − E

(
A−B(LB)>MLA

)
− EBB>E,

E(T ) = 0.

and K : Rd(LB) → Rm is an isometry operator such that RanK = KerLB.
Thus, optimal control is a feedback control of the form

u(t) =
(
KB>E(t)− (LB)>MLA

)
x(t).

Furthermore

J1(x0;T ) := −1

2
(x0)>E(0)x0

and E(0) is a non-positive matrix.



Optimal long time control

Denote

U =
{
u ∈ L2(0, T0 + T1)m | Lx(t) = 0, ∀t ∈ [T0, T0 + T1]

}
.

According to Bellman principle

min
u∈U

1

2

∫ T0+T1

0

|u(t)|2 dt = min
x1∈KerLK∩RT0

(x0)

(
J0(x1;T0) + J1(x1, T1)

)
,
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Long time averaged control
We take

L =
(
In In

)
and the system

˙̃x = Ãx̃+ B̃u, x̃(0) = x̃0 (3)

for

Ã =

(
A1 0
0 A2

)
, B̃ =

(
B1

B2

)
, x̃(t) =

(
x1(t)
x2(t)

)
,

The long time averaged control problem is

Lx̃(Tt) = 0, t > T.

The operator constricted by Algorithm 1 is

Ln =


In In
PBD −PBD
PBDS −PBDS

...
...

PBDS
n−1 −PBDSn−1

 ,

with
I D = 1

2
(A1 −A2), S = 1

2
(A1 +A2)

I PB the projector on Ker(LB)> = KerB>.



Comparison of different control notions

Denote
K =

(
B̃, ÃB̃, · · · , Ã2n−1B̃

)
.

The system (3) is simultaneously controllable if and only if

r(K) = 2n.

The system (3) has the long time averaged property if and only if

r(LnK) = r(Ln),

with Ln constructed by the Algorithm 1.

The system (3) is averaged controllable if and only if

r(K) = n.

Simultaneous =⇒ Long time averaged =⇒ Averaged



Example 1

A1 =

(
0 −1
1 0

)
, A2 =

(
1 2
0 1

)
& B =

(
1
0

)
.

We have

K =
(
B̃, ÃB̃, Ã2B̃, Ã3B̃

)
=


1 0 −1 0
0 1 0 −1
1 1 1 1
0 0 0 0

 ,

rankK = 3 < 4 =⇒ No simultaneous controllability.

rankL2K = 3 = rankL2 =⇒ Long time averaged controllable.

KerL2 =
(
1, 1, −1, −1

)>
R.

Take x̃0 = (1, 2, −1, 3)>.



Example 1 - cont.
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Example 2

A1 =

(
0 −1
1 0

)
, A2 =

(
1 −1
1 0

)
& B =

(
1
0

)
.

We have

K =
(
B̃, ÃB̃, Ã2B̃, Ã3B̃

)
=


1 0 −1 0
0 1 0 −1
1 1 0 −1
0 1 1 0

 ,

rankK = 4 =⇒ The system is simultaneous controllable.

d(L2) = 2

Take x̃0 = (1, 2, −1, −2)>.



Example 2 - cont.
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Conclusion

Long time averaged control

I A new control notion for parameter dependent problems,

I Between simultaneous and averaged control,

I Generalisation to arbitrary operators.

Open questions

I The results provided for a finite number of parameters.
What for an infinite number of parameters (either discrete or continuous) ?
In this case, we consider a system

ẋζ(t) = Aζxζ(t) +Bζu(t), xζ(0) = x0
ζ ,

ζ ∈ Ω – an unknown parameter and with (Ω,F , µ) a probability space.
Assuming

∫
Ω
x0
ζ dµζ = 0 under which conditions does it exist a control u

independent of ζ such that
∫

Ω
xζ(t) dµζ = 0 for every t > 0?

I A similar question can be addressed for PDEs.
In this case, the algebraic relation we used surely fails.

Thanks for your attention!
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