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e Problem formulation



The problem framework

An optimal control problem for an abstract heat equation:

—y'(t) = Ay(t) fort >0
{ y(0) = mem ° 1)

H - Hilbert space

A — positive semidefinite, self-adjoint unbounded operator on H,
— with dense domain D(A),
— with compact resolvent.

Keynote example: A = —A, the Dirichlet Laplacian in L?(Q).

{St}tZO — strongly continuous semigroup of non-expansive linear operators
generated by —A

Control w — initial datum aiming to:

(1) steer the solution (arbitrarily closed) to a desired target in
a given time horizon,

(2) minimise a given energy functional.



The system (1) is controllable to a target state y* € H in time T > 0 if there
is u € H such that

Sru=vy".

In general, system (1) is NOT controllable to an arbitrary target.
E.g. A= —A, the Dirichlet Laplacian in L?(Q)

(Vt>0) S.H C D(A) =H*(Q)NHH(Q)
- no target state y7 € H \ D(A) can be attained in any time.

System (1) is approximately controllable:
for every target time T > 0, target state y”, tolerance € > 0,
there exists an initial datum w € H such that

ISTu —y" [|la <.




The problem

Given a tolerance € > 0, a control time 7' > 0, and a target state y”, find
(P) @ = argmin {J () : |Sru—y" |l < e},
where

« 2 L d 2

T =Sl +3 [ 8O ISw—y O db,
0
with
> yq € L?(0,T; H), target trajectory;

> a > 0, weight of the control cost;

» 0< B e L%(0,T), weight of the control on the trajectory.
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e Characterisation of the solution



The solution is unique!
Indeed, by means of the indicator function:

0 ifyeC
T, —
e {+oo else.

the problem (P) is restated as

min {J (u) + I3 (Sru)},

ueH
where B = B (yT;¢) .
J 4 I o St is proper, strongly convex and lower-semicontinuous

= problem (P) has a unique solution 4.
Let % denote the unique solution of the unconstrained problem

4 = argmin J (u),

and § = St the corresponding final state.

Proposition

If ||!7—yT||H < g, then 4 = @. .
Otherwise, the optimal final state verifies § € 0B.




Standard approaches to the problem

B =0 (no desired trajectory)
HUM (Hilbert Uniqueness Method), some penalised version:

— based on the dual problem,
— discretisation of the system,
— approximation by a finite dimensional problem,

— iterative algorithm for getting the control.

@ Glowinski, R., Lions, J. L. Exact and approximate controllability for
distributed parameter systems, Acta Numer. (1994), 269-378.

@ Boyer, F. On the penalized HUM approach and its application to the
numerical approximation of null-controls for parabolic problems, ESAIM:
Proceedings (2013), no. 41, 15-58.

B#0

— even a more complex numerical treatment (convex optimisation techniques)

We present a different approach based on spectral decomposition of the
solution by eigenfunctions of A,



Geometrical interpretation
Denote

Y =(JoS 1),
ie. ¥(y) = J(u) for u=S_r(y).
Introduce sublevel sets of 1 = (J o S_7):
We={y€H:(y) <c}
={y€e H: y= Sru for some u € H with J (u) < c}.
W is empty for c < ¢ = J (@).

(We)e>e — a nested family of nonempty closed convex sets centred at g, that
increases with c.

Figure: Sublevel sets W, and the target ball.



The target ball is hit for the first time by W5, where ¢ = J(4).
The intersection g is the optimal final state.

g—y" =-AVe (),
for some 4 > 0.
Together with
N T
l9—y llm=e

we get a fully determined system for 4, 4.

Figure: Optimal final state § as intersection of W; and B.(y7T)



Spectral decomposition
Denote:
(n),en — an orthonormal basis of H, consisting of eigenfunctions of A
(An)nen — a sequence of corresponding (nonnegative) eigenvalues A,
lim A\, = 400

yn — the n-th Fourier coefficient of y € H.

The ellipsoids W, can be now characterised as

Wc = Zyngpn : Z (anyi + bnyn + cn) S Cpr,

n

Y (y)=J(u)
where

1
ap = g—i—— ﬁ(t)e%/\“tdt 62/\“T;
272/,

B
=1 a0 ()



The geometrical interpretation
-y =-AVe (),
together with
(Ve (y),, = 2anyn +bn, neN,

we get an explicit formula for the Fourier coefficients of the optimal final state
¥ .
"1+ 29an

It remains to determine the constant § > 0.

Condition ||§ — y”|| = € together with (3) implies

EOEDY <—& ot ”")) =< @)

1+ 2vay,



G — strictly increasing,
- G(0)=0,
—limy oo = 7 — 47| = <.

ez =1ly" —gll3

Figure: Function G

The equation
G(y) =&

has the unique solution for every ¢ € (0, (|7 — y" ||x).



Theorem [Generalized HUM]*

The solution of the optimal control problem (P) is given by
n n

where the Fourier coefficients (gn)nen of the final state ¢ are given by:

~ :y;{_:)'bn
"1+ 25an ]

¥ (2anys + bn) : .
GW)z:Z( 14 2van ) -

@* L., M., Molinari, C., Peypouquet, J.: Optimal control of parabolic
equations by spectral decomposition. Optimization 66 (8), 1359-1381
(2017)
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e Numerical recovery



Obtained explicit formulas incorporate infinite series.
Truncation required.
Introduce the truncated approximation of the optimal final state, §:

N

N N N ZJT—’AYNb
N =g en, with g = 2 5
i Un n, with § 1T Fnan (5)

n=1

Truncated Fourier series with approximate coefficients.

Theorem
The following estimate holds

4(|8/1% 2
N a2 T T,N |2 L2(0,T) yy, d d,N (|2
||y - y”H < 4||y -y ”H + 22 NT ||y -y ||L2(0,T;H)a

where 3y = Zf:;o yL o, and yN (1) = 25:0 y2 (t) pn the truncated series
representation of the target final state and the reference trajectory in the
distributed cost, respectively.




Numerical algorithm

— produces the approximate optimal final state ¢, with precision p.

Step 1. Determine N such that

2
T _ T,Nj|2 Hﬁ“L?(O,T) d _d,Nj2 P_2
max Hy Yy ”Ha a2e2ANT Hy Y HLZ(O,T;H) =8
Step 2. Compute en = limy_00 Gn (7).
Step 3. For € > ex the approximative solution is @ = 25:1 —%e’\"Tgon.

Otherwise, proceed to Step 4.

Step 4. Solve equation G'v (77) = €* numerically to find 4 (bisection method
or other).

Step 5. Compute the approximate optimal final state §~ using (5), and the
approximate optimal control &% by

N N

~N ~N _ AnT ~N

W =) dnpn=) € U pn.
n=1 n=1



Outline

e Numerical examples



Example 1 - Energy minimisation in 2D

The heat equation on Q = (0,1) x (0,1)

%y—Ay:O Qx(0,7)
y=0 00 x (0,7T) (6)
y(0) =u (0, 7).

Target time 7' = 0.001
We use the eigenfunctions of the Dirichlet Laplacian on the rectangle

©j.k(T1,T2) = sin (jrz1) sin (krze) , ik=12,...,
with corresponding eigenvalues

Nje = () + (km)?.



Example 1 - Energy minimisation in 2D

a=1
B =0 - no prescribed reference trajectory.

1 -
(P) 4 € arg min {§Hu|\iz : Sru € B (yT)} .

w€L2(0,m)

We choose a reachable final target y7.
We introduce

u(x1,x2) = exp (— (x% + x%)) - sin (571'x‘;’) - sin (57T23;) ,

and we set u” = u", the Fourier representation of u using the first 15 x 15
coefficients.

The final target, given as yT = SruT, has a finite series representation.

The aim: Explore the differences between the initial datum «” that generates
the target and the solution 4 for various values of .




B}

=6.5188¢-0

Figure: Initial data (left) and final state (right) for different values of .
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Figure: Initial data (left) and final state (right) for different values of .



Example 2 - Energy minimisation and trajectory regulation, 1D

The heat equation on Q = (0,7), 7" = 0.01
»a=10""
> ﬁ( ) = ]]'tl ta] (t), with t1 = T/3 and to = 2T/3;
» 4% (x,t) as a smoothing regularisation (through classical mollifier) of the
function & —— 1, 4, (), with £1 = 7/5 and x3 = 27/5;
» 47 (z) as a smoothing regularisation (again, through mollifier) of the
function © — 1(,, ,,) (), with x3 = 37/5 and =4 = 47/5.

Figure: ToP: reference trajectory y¢ for the distributed cost. BOoTTOM: target final
state y7, in comparison with their reconstructions after Fourier decomposition with

N=185 coefficients (indistinguishable).
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Figure: For the three values of e: evolution of the solution in time and comparison
with the reference trajectory y%(t) (t = 0.004), and with the target y7 (T = 0.01).
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The problem framework*

The constrained minimisation problem

P min{Jw: y(T)eB:G},

u

where:

— J is a given cost functional
—yT is a given target

— y the solution of

@ Ly(t) + Ay(t) = Bou(t)  for t € (0,T)
y(0) = 0.

H1 The functional J is strictly convex, coercive and lower-semicontinuous.

H2 The unbounded linear operator A : H — H is positive semidefinite,
selfadjoint with dense domain D(.A) and compact resolvent.

H3 The operator B; belongs to £ (U, H) for each time ¢ € (0,T); moreover
the pair (A, Bt) is approximately controllable in time 7.

U, H - real Hilbert space

@* L, M., Molinari, C.: Optimal distributed control of the heat-type equations
by spectral decomposition, submitted.



Existing numerical approaches

Optimal control problems involving distributed control:

usually restricted to a null control problem
approximation by an auxilliary problem (penalisation one)
Fenchel-Rockafeller duality

iterative algorithm for getting the control,

(finite element) discretisation of the system (convergence issues!),

Fernandez-Cara, Munch: Numerical exact controllability of the 1D heat
equation: duality and Carleman weights, JOTA (2014).

Fernandez-Cara, Munch: Strong convergent approximations of null
controls for the 1D heat equation, SEMA (2013).

Labbé, Trélat: Uniform controllability of semidiscrete approximations of
parabolic control systems, SCL (2006).



Characterisation of the solution by the dual problem
We introduce the Fenchel conjugate J* of the functional J:

J ()= sup { (W u)ru—J(u)} foru* € Liy.
ueL%’u

Theorem [Generalized HUM]

Let § € H be a reachable state.
Then

e argglel{}{ Jw): Tu=79}.
is of the form & = V.J* (—T*@T), where

@ Earg mln {J —T*oT) + (G, 0" ) }

T LQTYM — H is the operator that takes the distributed control and gives the
corresponding final state

T*SDT — B*SD,
where ¢ is the solution to the dual problem satisfying ¢(T') = ¢7.



Characterisation of the solution by the dual problem

It is enough to restrict minimisation problem (P) to controls of form
u=VJ*(=T"").
For such u

where

Fe") == (v (-T°6"), T, + 7 (-T76")].

The solution of problem (P) is

where ¢ is a solution of

min { F"): Jy(T) =y e =e. }. (7

eTeH




Optimal control constructive characterisation

For
e 2 1" P
Jw) =3 [ a@) [u@llizw dt + 5 [ BO) llyu(®) = y" Ollz2(r) dt-
0 0
we obtain
§" =arg min { F(p")} =arg min { (Mr o ¢ )u},
T eH eTeH

where M; : H — H is given by:

w (7)< [Feas ooy (5 DA @) as @
and C' = (C1, C2):
(Cru) () = V/a(t) u(t) Lo;
(C2u) (1) = V/B(E) yu(t) Lo

y(T) = —Mrp" + §(T).

Consequently, the original problem (P) is equivalent to

(P) min { (Mr ¢", 0 ) | Mr " —§(T)+y" lnu=¢
eTeH —_————

—y(T)
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