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The problem framework

An optimal control problem for an abstract heat equation:
{

−y′(t) = Ay(t) for t > 0
y (0) = u ∈ H.

(1)

H - Hilbert space
A – positive semidefinite, self-adjoint unbounded operator on H ,

– with dense domain D(A),
– with compact resolvent.

Keynote example: A = −∆, the Dirichlet Laplacian in L2(Ω).

{St}t≥0 – strongly continuous semigroup of non-expansive linear operators
generated by −A

Control u – initial datum aiming to:

(1) steer the solution (arbitrarily closed) to a desired target in
a given time horizon,

(2) minimise a given energy functional.



The system (1) is controllable to a target state yT ∈ H in time T > 0 if there
is u ∈ H such that

STu = yT .

In general, system (1) is NOT controllable to an arbitrary target.
E.g. A = −∆, the Dirichlet Laplacian in L2(Ω)

(∀ t > 0) StH ⊆ D(A) = H2(Ω) ∩H1
0(Ω)

– no target state yT ∈ H \D(A) can be attained in any time.

System (1) is approximately controllable:
for every target time T > 0, target state yT , tolerance ε > 0,
there exists an initial datum u ∈ H such that

‖STu− yT ‖H ≤ ε.



The problem

Given a tolerance ε > 0, a control time T > 0, and a target state yT , find

(P) û = argmin
u∈H

{

J (u) : ‖STu− yT ‖H ≤ ε
}

,

where

J (u) =
α

2
‖u‖2H +

1

2

∫ T

0

β (t) ‖Stu− yd (t) ‖2H dt,

with

◮ yd ∈ L2 (0, T ;H), target trajectory;

◮ α > 0, weight of the control cost;

◮ 0 ≤ β ∈ L2 (0, T ), weight of the control on the trajectory.
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The solution is unique!
Indeed, by means of the indicator function:

IC (y) =

{

0 if y ∈ C

+∞ else.

the problem (P) is restated as

min
u∈H

{J (u) + IB̄ (STu)} ,

where B̄ = B (yT ; ε) .

J + IB̄ ◦ ST is proper, strongly convex and lower-semicontinuous

=⇒ problem (P) has a unique solution û.
Let ũ denote the unique solution of the unconstrained problem

ũ = argmin
u∈H

J (u) ,

and ỹ = ST ũ the corresponding final state.

Proposition

If ‖ỹ − yT ‖H ≤ ε, then û = ũ.
Otherwise, the optimal final state verifies ŷ ∈ ∂B̄.



Standard approaches to the problem

β = 0 (no desired trajectory)
HUM (Hilbert Uniqueness Method), some penalised version:

– based on the dual problem,

– discretisation of the system,

– approximation by a finite dimensional problem,

– iterative algorithm for getting the control.

Glowinski, R., Lions, J. L. Exact and approximate controllability for
distributed parameter systems, Acta Numer. (1994), 269-378.

Boyer, F. On the penalized HUM approach and its application to the
numerical approximation of null-controls for parabolic problems, ESAIM:
Proceedings (2013), no. 41, 15-58.

β 6= 0
– even a more complex numerical treatment (convex optimisation techniques)

We present a different approach based on spectral decomposition of the
solution by eigenfunctions of A,



Geometrical interpretation
Denote

ψ = (J ◦ S−T ) ,

i.e. ψ(y) = J(u) for u = S−T (y).

Introduce sublevel sets of ψ = (J ◦ S−T ):

Wc = {y ∈ H : ψ(y) ≤ c}

= {y ∈ H : y = STu for some u ∈ H with J (u) ≤ c} .

Wc is empty for c < c̃ = J (ũ).

(Wc)c≥c̃ – a nested family of nonempty closed convex sets centred at ỹ, that
increases with c.

b

b

Bε(yT )

Wc

Wĉ

ỹ

yT ε

Figure: Sublevel sets Wc and the target ball.



The target ball is hit for the first time by Wĉ, where ĉ = J(û).
The intersection ŷ is the optimal final state.

ŷ − yT = −γ̂∇ψ (ŷ) ,

for some γ̂ > 0.
Together with

‖ŷ − yT ‖H = ε

we get a fully determined system for γ̂, ŷ.

b

b

b

Bε(yT )

Wc

Wĉ

ỹ

yT ε

ŷ

−∇ψ(ŷ)

Figure: Optimal final state ŷ as intersection of Wĉ and Bε(yT )



Spectral decomposition
Denote:
(ϕn)n∈N

– an orthonormal basis of H , consisting of eigenfunctions of A
(λn)n∈N – a sequence of corresponding (nonnegative) eigenvalues λn,

lim
n
λn = +∞

yn – the n-th Fourier coefficient of y ∈ H .

The ellipsoids Wc can be now characterised as

Wc =







∑

n

ynϕn :
∑

n

(
any

2
n + bnyn + cn

)

︸ ︷︷ ︸

ψ(y)=J(u)

≤ c







, (2)

where

an =

(
α

2
+

1

2

∫ T

0

β (t) e−2λntdt

)

e2λnT ;

bn = −eλnT

∫ T

0

β (t) e−λntydn (t) dt;

cn =
1

2

∫ T

0

β (t)
(

ydn(t)
)2

dt.



The geometrical interpretation

ŷ − yT = −γ̂∇ψ (ŷ) ,

together with
(∇ψ(y))n = 2anyn + bn, n ∈ N,

we get an explicit formula for the Fourier coefficients of the optimal final state
ŷ:

ŷn =
yTn − γ̂bn
1 + 2γ̂an

. (3)

It remains to determine the constant γ̂ > 0.

Condition ‖ŷ − yT ‖ = ε together with (3) implies

G(γ̂) :=
∑

n

(

γ̂
(
2any

T
n + bn

)

1 + 2γan

)2

= ε2. (4)



G – strictly increasing,
– G(0)=0,
– limγ→∞ = ‖ỹ − yT ‖ =: εc.

γ

ε2

G(γ)

ε2c = ‖yT − ỹ‖2H

û = ũ

Figure: Function G

The equation
G(γ̂) = ε2

has the unique solution for every ε ∈
(
0, ‖ỹ − yT ‖H

)
.



Theorem [Generalized HUM]∗

The solution of the optimal control problem (P) is given by

û =
∑

n

ûnϕn =
∑

n

eλnT ŷnϕn,

where the Fourier coefficients (ŷn)n∈N of the final state ŷ are given by:

ŷn =
yTn − γ̂bn
1 + 2γ̂an

,

G(γ̂) :=
∑

n

(

γ̂
(
2any

T
n + bn

)

1 + 2γan

)2

= ε2.

∗ L., M., Molinari, C., Peypouquet, J.: Optimal control of parabolic
equations by spectral decomposition. Optimization 66 (8), 1359-1381
(2017)
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Obtained explicit formulas incorporate infinite series.
Truncation required.
Introduce the truncated approximation of the optimal final state, ŷN :

ŷN =

N∑

n=1

ŷNn ϕn, with ŷNn =
yTn − γ̂Nbn
1 + 2γ̂Nan

. (5)

Truncated Fourier series with approximate coefficients.

Theorem

The following estimate holds

‖ŷN − ŷ‖2H ≤ 4‖yT − yT,N‖2H +
4‖β‖2L2(0,T )

α2e2λNT
‖yd − yd,N‖2L2(0,T ;H),

where yT,N =
∑N

n=0 y
T
nϕn and yd,N (t) =

∑N

n=0 y
d
n (t)ϕn the truncated series

representation of the target final state and the reference trajectory in the
distributed cost, respectively.



Numerical algorithm

– produces the approximate optimal final state ŷN , with precision ρ.

Step 1. Determine N such that

max

{

‖yT − yT,N‖2H ,
‖β‖2L2(0,T )

α2e2λNT
‖yd − yd,N‖2L2(0,T ;H)

}

≤
ρ2

8
.

Step 2. Compute εN := limγ→∞GN (γ).
Step 3. For ε ≥ εN the approximative solution is ũN =

∑N

n=1 −
bn
2an

eλnTϕn.
Otherwise, proceed to Step 4.
Step 4. Solve equation GN (γ) = ε2 numerically to find γ̂N (bisection method
or other).
Step 5. Compute the approximate optimal final state ŷN using (5), and the
approximate optimal control ûN by

ûN =

N∑

n=1

ûNn ϕn =

N∑

n=1

eλnT ŷNn ϕn.
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Example 1 - Energy minimisation in 2D

The heat equation on Ω = (0, 1)× (0, 1)







d
dt
y −∆y = 0 Ω× (0, T )

y = 0 ∂Ω× (0, T )

y(0) = u (0, π).

(6)

Target time T = 0.001
We use the eigenfunctions of the Dirichlet Laplacian on the rectangle

ϕj,k(x1, x2) = sin (jπx1) sin (kπx2) , j, k = 1, 2, . . . ,

with corresponding eigenvalues

λj,k = (jπ)2 + (kπ)2 .



Example 1 - Energy minimisation in 2D

α = 1
β = 0 - no prescribed reference trajectory.

(P) û ∈ arg min
u∈L2(0,π)

{
1

2
‖u‖2L2 : STu ∈ Bε (yT )

}

.

We choose a reachable final target yT .
We introduce

u(x1, x2) = exp
(
−
(
x2
1 + x2

2

))
· sin

(
5πx3

1

)
· sin

(
5πx7

2

)
,

and we set uT = uN , the Fourier representation of u using the first 15× 15
coefficients.

The final target, given as yT = STu
T , has a finite series representation.

The aim: Explore the differences between the initial datum uT that generates
the target and the solution û for various values of ε.



Figure: Initial data (left) and final state (right) for different values of ε.



Figure: Initial data (left) and final state (right) for different values of ε.



Example 2 - Energy minimisation and trajectory regulation, 1D
The heat equation on Ω = (0, π), T = 0.01

◮ α = 10−4;
◮ β (t) = 1[t1,t2] (t), with t1 = T/3 and t2 = 2T/3;
◮ yd (x, t) as a smoothing regularisation (through classical mollifier) of the

function x 7−→ 1[x1,x2] (x), with x1 = π/5 and x2 = 2π/5;
◮ yT (x) as a smoothing regularisation (again, through mollifier) of the

function x 7−→ 1[x3,x4] (x), with x3 = 3π/5 and x4 = 4π/5.

Figure: Top: reference trajectory yd for the distributed cost. Bottom: target final
state yT , in comparison with their reconstructions after Fourier decomposition with
N=185 coefficients (indistinguishable).



Figure: For the three values of ε: evolution of the solution in time and comparison
with the reference trajectory yd(t) (t = 0.004), and with the target yT (T = 0.01).
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The problem framework∗

The constrained minimisation problem

(P) min
u

{

J(u) : y(T ) ∈ Bε (yT )
}

,

where:
– J is a given cost functional
– yT is a given target
– y the solution of

(E)

{
d
dt
y(t) +Ay(t) = Btu(t) for t ∈ (0, T )

y(0) = 0.

H1 The functional J is strictly convex, coercive and lower-semicontinuous.

H2 The unbounded linear operator A : H → H is positive semidefinite,
selfadjoint with dense domain D(A) and compact resolvent.

H3 The operator Bt belongs to L (U ,H) for each time t ∈ (0, T ); moreover
the pair (A,Bt) is approximately controllable in time T .

U,H - real Hilbert space

∗ L, M., Molinari, C.: Optimal distributed control of the heat-type equations
by spectral decomposition, submitted.



Existing numerical approaches

Optimal control problems involving distributed control:

– usually restricted to a null control problem

– approximation by an auxilliary problem (penalisation one)

– Fenchel-Rockafeller duality

– iterative algorithm for getting the control,

– (finite element) discretisation of the system (convergence issues!),

Fernandez-Cara, Munch: Numerical exact controllability of the 1D heat
equation: duality and Carleman weights, JOTA (2014).

Fernandez-Cara, Munch: Strong convergent approximations of null
controls for the 1D heat equation, SEMA (2013).

Labbé, Trélat: Uniform controllability of semidiscrete approximations of
parabolic control systems, SCL (2006).



Characterisation of the solution by the dual problem
We introduce the Fenchel conjugate J⋆ of the functional J :

J⋆ (u⋆) = sup
u∈L2

T,U

{ 〈u⋆, u〉T,U − J(u) } for u⋆ ∈ L2
T,U .

Theorem [Generalized HUM]

Let ȳ ∈ H be a reachable state.
Then

ū ∈ argmin
u∈U

{ J(u) : T u = ȳ } .

is of the form ū = ∇J⋆
(
−T ∗ϕ̄T

)
, where

ϕ̄T ∈ arg min
ϕT ∈H

{

J⋆(−T ∗ϕT ) + 〈ȳ, ϕT 〉H
}

.

T : L2
T,U → H is the operator that takes the distributed control and gives the

corresponding final state
T u = y(T ).

T ∗ϕT = B∗ϕ,

where ϕ is the solution to the dual problem satisfying ϕ(T ) = ϕT .



Characterisation of the solution by the dual problem

It is enough to restrict minimisation problem (P) to controls of form
u = ∇J⋆

(
−T ∗ϕT

)
.

For such u
J(u) = F (ϕT ),

where

F (ϕT ) = −
[

〈∇J⋆
(

−T ∗ϕT
)

, T ∗ϕT 〉L2

T,U
+ J⋆

(

−T ∗ϕT
)]

.

Theorem

The solution of problem (P) is

û = ∇J⋆
(

−T ∗ϕ̂T
)

,

where ϕ̂T is a solution of

min
ϕT ∈H

{

F (ϕT ) : ‖y(T )− yT ‖H = ε.
}

. (7)



Optimal control constructive characterisation
For

J(u) =
1

2

∫ T

0

α(t) ‖u(t)‖2L2(ω) dt +
1

2

∫ T

0

β(t) ‖yu(t)− yd(t)‖2L2(ω′) dt.

we obtain

ϕ̂T = arg min
ϕT ∈H

{

F (ϕT )
}

= arg min
ϕT ∈H

{

〈MT ϕT , ϕT 〉H
}

,

where Mt : H → H is given by:

Mt

(

ϕT
)

=

∫ t

0

e(s−t)AB
{[

(C∗C)
−1
(

B∗e(·−T )A∗

ϕT
)]

(s)
}

ds, (8)

and C = (C1, C2):

(C1u) (t) =
√

α(t) u(t) 1ω;

(C2u) (t) =
√

β(t) yu(t) 1ω′ .

y(T ) = −MTϕ
T + ỹ(T ).

Consequently, the original problem (P) is equivalent to

(
P ′
)

min
ϕT ∈H







〈MT ϕT , ϕT 〉H : ‖MT ϕT − ỹ(T )
︸ ︷︷ ︸

−y(T )

+yT ‖H = ε







.
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