Greedy optimal control for elliptic equations

Applications to turnpike control

Martin Lazar
University of Dubrovnik
in collaboration with:
Víctor Hernández-Santamaría (DeustoTech, University of Deusto)
Enrique Zuazua (University of Deusto, UAM)

April, 2018

Parameter dependent problems

Real life applications (may) depend on a large number of parameters

examples: thickness, conductivity, density, length, humidity, pressure, curvature,...

Parameter dependent problems (Cont.)

When dealing with applications and simulations, we would like to explore within different parameter configurations.

- From the control point of view, this implies solving a different problem for each configuration.
- Computationally expensive.

Our goal

Apply greedy theory to have a robust and fast numerical solvers.

Parameter dependent control problem

$\Omega \subset \mathbb{R}^{N}, \quad \omega \subset \Omega$.
Consider the system

$$
\begin{cases}-\operatorname{div}(a(x, \nu) \nabla y)+c y=\chi_{\omega} u & \text { in } \Omega, \tag{1}\\ y=0 & \text { on } \partial \Omega\end{cases}
$$

$\circ \nu$ is a parameter $\quad \circ u \in L^{2}(\omega)$ is a control $\quad \circ c=c(x) \in L^{\infty}(\Omega)$
Optimal control problem $\left(\mathrm{OCP}_{\nu}\right)$

$$
\min _{u \in L^{2}(\omega)} J_{\nu}(u)=\frac{1}{2}|u|_{L^{2}(\omega)}^{2}+\frac{\beta}{2}\left\|y-y_{d}\right\|_{L^{2}(\Omega)}^{2},
$$

Parameter dependent control problem (cont.)

Optimal control problem $\left(\mathrm{OCP}_{\nu}\right)$

$$
\min _{u \in L^{2}(\omega)} J_{\nu}(u)=\frac{1}{2}|u|_{L^{2}(\omega)}^{2}+\frac{\beta}{2}\left\|y-y_{d}\right\|_{L^{2}(\Omega)}^{2}
$$

ヨ! optimal solution is well-known (Lions, Tröltzsch,...)
Characterization: optimal pair (\bar{u}, \bar{y})

$$
\begin{gather*}
\bar{u}=-\chi_{\omega} \bar{q} \\
\begin{cases}-\operatorname{div}(a(x, \nu) \nabla \bar{y})+c \bar{y}=-\chi_{\omega} \bar{q}, & \text { in } \Omega, \\
-\operatorname{div}(a(x, \nu) \nabla \bar{q})+c \bar{q}=\beta\left(\bar{y}-y^{d}\right), & \text { in } \Omega, \\
\bar{y}=\bar{q}=0, & \text { on } \partial \Omega .\end{cases} \tag{2}
\end{gather*}
$$

As the state y depends on ν, also the control u depends on ν.

Parameter dependent control problem (cont.)

$$
\begin{cases}-\operatorname{div}(a(x, \nu) \nabla y)+c y=\chi_{\omega} u & \text { in } \Omega \\ y=0 & \text { on } \partial \Omega\end{cases}
$$

From the practical point of view,
Measure parameter ν and determine u_{ν}

$$
\min _{u \in L^{2}(\omega)} J_{\nu}(u)=\frac{1}{2}|u|_{L^{2}(\omega)}^{2}+\frac{\beta}{2}\left\|y-y_{d}\right\|_{L^{2}(\Omega)}^{2}
$$

using classical methods (iterative methods, ...)
Repeat the process for each new value of ν.

> CAN WE DO IT BETTER?

Greedy control

Assume that ν ranges within a compact set $\mathcal{K} \subset \mathbb{R}^{d}$ and $a_{\nu}=a(x, \nu)$ are bounded functions satysfing

$$
0<a_{1} \leq a_{\nu} \leq a_{2}, \quad \nu \in K
$$

In this way, we ensure that each control can be uniquely determined by

$$
\bar{u}_{\nu}=-\chi_{\omega} \bar{q}
$$

where (\bar{y}, \bar{q}) solve the optimality system (8). Consider the set of controls \bar{u}_{ν} for each possible value $\nu \in \mathcal{K}$. That is,

$$
\overline{\mathcal{U}}=\left\{\bar{u}_{\nu}: \nu \in \mathcal{K}\right\}
$$

The IDEA

To determine a finite number of values of ν that yield the best possible approximation of the control manifold $\overline{\mathcal{U}}$

Description of the method

We look for a small number of parameters $\nu \in \mathcal{K}$ approximating the manifold $\overline{\mathcal{U}}$ in the sense of the Kolmogorov width. Roughly, the Kolmogorov width measures how well we can approximate $\overline{\mathcal{U}}$ by a finite dimensional space.

With greedy algorithms (Cohen \& DeVore, Volkwein, Buffa et. al, ...), we search for the most representative values of \bar{u}_{ν}.

That is, given a tolerance ε, the goal is to find

$$
\nu_{1}, \ldots, \nu_{n(\varepsilon)}
$$

such that, for any other $\nu \in \mathcal{K}$, the corresponding control \bar{u}_{ν} can be approximated by $u_{\nu}^{\star} \in \operatorname{span}\left\{\bar{u}_{\nu_{1}}, \ldots, \bar{u}_{\nu_{n(\varepsilon)}}\right\}$ and

$$
\left\|u_{\nu}^{\star}-\bar{u}_{\nu}\right\|_{L^{2}(\omega)} \leq \varepsilon .
$$

We also want to minimize n.

The surrogate

In practical implementations, the set $\overline{\mathcal{U}}$ is unknown.
Given two parameters ν_{1} and ν_{2}, how can we measure the distance between $\bar{u}_{\nu_{1}}$ and $\bar{u}_{\nu_{2}}$?

Recall that we want to avoid to compute \bar{u}_{ν}.

The surrogate

In practical implementations, the set $\overline{\mathcal{U}}$ is unknown.
Given two parameters ν_{1} and ν_{2}, how can we measure the distance between $\bar{u}_{\nu_{1}}$ and $\bar{u}_{\nu_{2}}$?

Recall that we want to avoid to compute \bar{u}_{ν}.
Standard residual: Suppose that we have computed $u_{\nu_{1}}$

$$
\left|u_{\nu_{1}}-u_{\nu_{2}}\right| \sim \nabla J_{\nu_{2}}\left(u_{\nu_{1}}\right)-\nabla J_{\nu_{2}}\left(u_{\nu_{2}}\right)=\nabla J_{\nu_{2}}\left(u_{\nu_{1}}\right)
$$

Compute $\nabla J_{\nu_{2}}\left(u_{\nu_{1}}\right)=u_{\nu_{1}}+\beta S_{\nu_{2}}^{*}\left(S_{\nu_{2}} u_{\nu_{1}}-y_{d}\right)$, where S_{ν} is to control-to-state operator. This means

$$
\left\{\begin{array}{ll}
-\operatorname{div}\left(a_{\nu_{2}} \nabla y\right)+c y=\chi_{\omega} u_{\nu_{1}}, & \text { in } \Omega, \\
-\operatorname{div}\left(a_{\nu_{2}} \nabla q\right)+c q=\beta\left(y-y^{d}\right), & \text { in } \Omega, \\
y=q=0, & \text { on } \partial \Omega .
\end{array} \quad \Rightarrow-\chi_{\omega} q_{\nu_{2}}=S_{\nu_{2}}^{*}\left(S_{\nu_{2}} u_{\nu_{1}}-y_{d}\right)\right.
$$

Cheaper surrogates

A cheap surrogate: Instead of using \bar{u}_{ν} and approximate the manifold $\overline{\mathcal{U}}$, use the optimal variables ($\bar{q}_{\nu}, \bar{y}_{\nu}$) and approximate the manifold $\overline{\mathcal{Q}} \times \overline{\mathcal{Y}}$.

Denoting $L_{\nu} z:=-\operatorname{div}\left(a_{\nu} \nabla z\right)+c z$, we define

$$
R_{\nu}(q, y):=\binom{L_{\nu} y+\chi_{\omega} q}{L_{\nu} q-\beta\left(y-y_{d}\right)}=\underbrace{G_{\nu}(q, y)}_{\text {linear part of } R_{\nu}(q, y)}+\binom{0}{\beta y_{d}} .
$$

With this definition, we are able to compute the following estimates:

$$
\begin{gathered}
c_{1}\left(\left\|y-\bar{y}_{\nu}\right\|_{H_{0}^{1} \Omega}+\left\|q-\bar{q}_{\nu}\right\|_{H_{0}^{1}(\Omega)}\right) \leq\left\|R_{\nu}(q, y)\right\|_{H^{-1}(\Omega)}, \\
\left\|R_{\nu}(p, y)\right\|_{H^{-1} \Omega} \leq\left(1+\alpha_{2}\right)\left(\left\|y-\bar{y}_{\nu}\right\|_{H_{0}^{1}(\Omega)}+\left\|q-\bar{q}_{\nu}\right\|_{H_{0}^{1}(\Omega)}\right) .
\end{gathered}
$$

where c_{1} and α_{2} only depending on a_{1}, a_{2} and $\|c\|_{\infty}$.
Upper and lower bounds for $R_{\nu}(q, y)$ are essential for the proof of greedy algorithms in terms of the Kolmogorov width.

Main results

$$
\begin{equation*}
R_{\nu}(q, y):=\binom{L_{\nu} y+\chi_{\omega} q}{L_{\nu} q-\beta\left(y-y_{d}\right)} . \tag{3}
\end{equation*}
$$

Theorem 1 (H. Santmaria, L., Zuazua, '17)

The residual (3) provides the approximation estimates for optimal controls and states

$$
\begin{aligned}
& \bullet\left\|u_{\nu}^{\star}-\bar{u}_{\nu}\right\|_{L^{2}(\Omega)} \leq \frac{1}{c_{1}}\left\|R_{\nu}(q, y)\right\|_{\left[H^{-1}(\Omega)\right]^{2}} \\
& \bullet\left\|y_{\nu}^{\star}-\bar{y}_{\nu}\right\|_{H_{0}^{1}(\Omega)} \leq\left(\frac{1}{\alpha_{1} c_{1}}\right)\left\|R_{\nu}(q, y)\right\|_{\left[H^{-1}(\Omega)\right]^{2}}
\end{aligned}
$$

where c_{1} and α_{1} only depend on a_{1}, a_{2} and $\|c\|_{\infty}$.

Offline algorithm

Step 1: Initialization. Fix $\varepsilon>0$. Choose any $\nu \in \mathcal{K}, \nu=\nu_{1}$ and compute the minimizer of $J_{\nu_{1}}$. This leads to $\binom{\bar{q}_{\nu_{1}}}{\bar{y}_{\nu_{1}}}$.
Step 2: recursive choice of ν.
Assuming we have chosen ν_{1}, \ldots, ν_{p}, we choose ν_{p+1} as the maximizer of

$$
\max _{\nu \in \mathcal{K}}\left\|\inf _{(q, y) \in\left(\overline{\mathcal{Q}}_{\rho}, \bar{y}_{p}\right)} R_{\nu}(q, y)\right\|
$$

Step 3: Stopping criterion. Stop if the $\max \leq \varepsilon$.

```
Theorem 1 ( H-Santamaria, L., Zuazua, '17)
```

The offline algorithm stops after $n_{0}(\varepsilon)$ iterations, and fullfills the requirements of the greedy theory.

Online algorithm

After choosing the most representative values of ν, we can construct an approximated optimal control u_{ν}^{\star} for any arbitrary given value $\nu \in \mathcal{K}$ by taking

$$
u_{\nu}^{\star}=\sum_{i=1}^{k} \lambda_{i} \bar{q}_{\nu_{i}} \mid \omega
$$

where λ_{i} are determined by the projection of the vector $\binom{0}{y_{d}}$ to the space

$$
\operatorname{span}\left\{R_{\nu}\left(\bar{q}_{\nu_{1}}, \bar{y}_{\nu_{1}}\right), \ldots, R_{\nu}\left(\bar{q}_{\nu_{k}}, \bar{y}_{\nu_{k}}\right)\right\}
$$

Numerical Results

Numerical examples

$\Omega=(0,1)^{2}$ in $2-\mathrm{D}$ or $\Omega=(0,1)$ in 1-D.

- Uniform meshes, i.e., meshes with constant discretization steps in each direction, $N=400$.
- We will approximate the operator $\mathcal{A}=-\operatorname{div}(a(x, \nu) \nabla \cdot)$ by using the standard 5-point discretization.
\bigcirc Discretize-then-optimize.
$\nu \in \mathcal{K}=[1,10]$.
- \mathcal{K} sampled in 100 equidistant points.

Greedy test \# 1

$$
\begin{aligned}
& \circ a(x, \nu)=1+\nu\left(x_{1}^{2}+x_{2}^{2}\right), \quad \circ c(x)=\sin \left(2 \pi x_{1}\right) \sin \left(2 \pi x_{2}\right) \\
& \circ y_{d}=\sin \left(\pi x_{1}\right), \quad \circ \beta=10^{4}, \quad \circ \varepsilon=0.005 \\
& \circ t_{\text {cheap }}=304 s, \circ t_{s t d}=384 s
\end{aligned}
$$

(a) Selected ν

(b) Approximation error

Approximation for $\nu=\pi / 2$

(c) The approximated control

(d) The control set ω

- $\left|u_{\pi / 2}^{\star}-\bar{u}_{\pi / 2}\right|_{L^{2}(\omega)} \approx 1.45 \times 10^{-5}, \quad t_{\text {online }}=0.45 \mathrm{~s}, \quad t_{\text {iterative }}=6.01 \mathrm{~s}$.

Approximation for $\nu=\pi / 2$ (cont.)

(e) The controlled state

(f) The state $y_{\pi / 2}^{\star}$ and the target function y^{d} (dashed)

$$
\circ\left|y_{\pi / 2}^{\star}-\bar{y}_{\pi / 2}\right|_{L^{2}(\Omega)} \approx 1.15 \times 10^{-7}
$$

Greedy test \# 2

$$
\begin{aligned}
& \circ a(x, \nu)=1+\nu x^{2}(1-x)^{2}, \quad \circ c(x)=-15 \sin (\pi x), \quad \circ y_{d}=\chi_{(0.5,0.8)}, \\
& \beta=10^{4}, \quad \circ \omega=(0.3,0.9), \quad \circ \varepsilon=0.005 \\
& \circ t_{\text {cheap }}=0.68 \mathrm{~s}, \circ t_{\text {std }}=0.809 \mathrm{~s}
\end{aligned}
$$

Greedy test \# 2

(i) The approximated control
$\circ\left|u_{\pi / 2}^{\star}-\bar{u}_{\pi / 2}\right|_{L^{2}(\omega)} \approx 1.17 \times 10^{-5}, \quad \circ\left\|y_{\pi / 2}^{\star}-\bar{y}_{\pi / 2}\right\|_{L^{2}(\Omega)} \approx 5.09 \times 10^{-7}$,

Connection with The TURNPIKE PROBLEMS

Time dependent control problem

Consider

$$
\begin{cases}\partial_{t} y-\operatorname{div}(a(x, \nu) \nabla y)+c y=\chi_{\omega} u & \text { in } Q=\Omega \times(0, T) \tag{4}\\ y=0 & \text { on } \Sigma=\partial \Omega \times(0, T) \\ y(x, 0)=y^{0}(x) & \text { in } \Omega .\end{cases}
$$

and the control problem

$$
\min _{u} J_{\nu}^{T}(u)=\frac{1}{2} \int_{0}^{T}|u(t)|_{L^{2}(\omega)}^{2} d t+\frac{\beta}{2} \int_{0}^{T}\left\|y(t)-y^{d}\right\|_{L^{2}(\Omega)}^{2} d t
$$

The optimal solution $\left(u^{T}, y^{T}\right)$ satisfies
$\left\|y^{T}(t)-\bar{y}\right\|_{L^{2}(\Omega)}+\left\|u^{T}(t)-\bar{u}\right\|_{L^{2}(\Omega)} \leq K\left(e^{-\mu t}+e^{-\mu(T-t)}\right), \quad \forall t \in[0, T]$

- Exponential convergence of the finite-time horizon control problem to the steady one as $T \rightarrow \infty$.

The case $c(x) \geq 0$ (greedy test $\# 1)$

$$
u(x, t)=u_{\pi / 2}^{\star}(x), \quad y_{0}(x)=\sin \left(3 \pi x_{1}\right) \sin \left(2 \pi x_{2}\right)
$$

The case $c(x) \leq-\lambda_{1}$ (greedy test $\# 2$)

$$
u(x, t)=u_{\pi / 2}^{\star}(x), \quad y_{0}(x)=\chi_{(0.4,0.9)}
$$

The case $c(x) \leq-\lambda_{1}$ (greedy test $\# 2$)

$$
u=u_{\pi / 2}^{T}(x, t), \quad y_{0}(x)=\chi_{(0.4,0.9)}
$$

Thank you!

