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OPTIMAL DECENTRALIZED CONTROL

quantify the repercussions of intermittent feedback

MAS control performance vs. MAS lifetime

local Dynamic Programming (DP) problems are coupled =⇒
nonautonomous dynamics =⇒ non-stationary cost-to-go

the need for an online model-free Reinforcement Learning (RL)
method

Kalman Filtering (KF) for delayed, sampled and noisy data
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PRELIMINARIES

IMPULSIVE DELAYED SYSTEMS

Σ


ẋ(t) = Ax(t) + Adx(t − d) + Bω(t), t /∈ T ,
y(t) = Cx(t) + Cdx(t − d) + Dω(t), t ≥ t0,

x(t+) = Ex(t) + Edx(t − d), t ∈ T ,

where x ∈ Rnx is the state, ω ∈ Rnω is the input, y ∈ Rny is the output
and d ≥ 0 is the time delay
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PRELIMINARIES

Lp-STABILITY W.R.T. SET AND WITH BIAS

Lp-norm w.r.t. a set B ⊂ Rn: ‖f [a,b]‖p,B :=
(∫

[a,b]
‖f (s)‖p

Bds
)1/p

,
where ‖f (s)‖B := infb∈B ‖f (s)− b‖ and p ∈ [1,∞]

output set: By :=
{

y ∈ Rny |∃b ∈ B such that y = (C + Cd)b
}

,
where B := Ker(A + Ad)

DEFINITION (Lp-STABILITY W.R.T. B WITH BIAS b)

Let p ∈ [1,∞]. The system Σ is Lp-stable w.r.t. a set B and with bias
b(t) ≡ b ≥ 0 from ω to y with gain γ ≥ 0 if there exists K ≥ 0 such that,
for each t0 ∈ R and each ψx ∈ PC([t0 − d, t0],Rnx ), each solution to Σ
from ψx at t = t0 satisfies
‖y[t0, t ]‖p,By ≤ K‖ψx‖d,B + γ‖ω[t0, t ]‖p + ‖b[t0, t ]‖p for each t ≥ t0.
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PROBLEM

AGENT DYNAMICS

consider N heterogeneous linear agents given by

ξ̇i = Aiξi + Biui + ωi ,

ζi = Ciξi , (1)

where ξi ∈ Rnξi is the state, ui ∈ Rnui is the input, ζi ∈ Rnζ is the
output of the ith agent, i ∈ {1, 2, . . . ,N}, and ωi ∈ Rnξi reflects
exogenous disturbances and/or modeling uncertainties

a common decentralized policy is

ui(t) = −Ki

∑
j∈Ni

(ζi(t)− ζj(t)), (2)

where Ki is an nui × nζ gain matrix
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PROBLEM

AGENT INTERCONNECTIONS
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PROBLEM

CLOSED-LOOP DYNAMICS

define ξ := (ξ1, . . . , ξN), ζ := (ζ1, . . . , ζN) and ω := (ω1, . . . , ωN)

utilizing the Laplacian matrix L of the communication graph G, we
reach

ξ̇(t) = Aclξ(t) + Acldξ(t − d) + ω(t),

ζ = Cclξ,

with

Acl = diag(A1, . . . ,AN), Acld = [Acld
ij ],

Acld
ij = −lijBiKiCj , Ccl = diag(C1, . . . ,CN),
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OPTIMAL INTERMITTENT FEEDBACK

OPTIMAL INTERMITTENT FEEDBACK

t j
i ∈ T , i ∈ N – broadcasting instants of the jth agent

asynchronous communication

xi := (. . . , ζi − ζj , . . .), where i ∈ {1, . . . ,N} and j ∈ Ni

PROBLEM

For each j ∈ {1, . . . ,N}, minimize the following cost function that
captures performance vs. energy trade-offs

E
ω

{
∞∑
i=1

(γj)
i
[ t j

i∫
t j
i−1

(x>j Pjxj + u>j Rjuj)dt + Sj

︸ ︷︷ ︸
rj (xj ,uj ,τ

j
i )

]}
(3)

for the j th agent of MAS (1)-(2) over all sampling policies τ j
i and for all

initial conditions xj(t0) ∈ Rnxj .
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METHODOLOGY

INTERCONNECTING NOMINAL AND ERROR SYSTEM

introduce

e(t) = (e1(t), . . . ,eN(t)) := ζ̂(t)− ζ(t − d)

closed-loop dynamics become

ξ̇(t) = Aclξ(t) + Acldξ(t − d) + Aclee(t) + ω(t),

ζ = Cclξ,

with Acle = [Acle
ij ], Acle

ij = −lijBiKi

ZOH sampling yields

ė(t) = −ζ̇(t − d) = −Cclξ̇(t − d),

for each t j
i + d ∈ (T + d) we have

ek ((t j
i + d)+) = ek (t j

i + d), k ∈ {1, . . . ,N}, k 6= j,

ej ((t j
i + d)+) = νj (t j

i + d)
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METHODOLOGY

SMALL-GAIN THEOREM

select

ζ̃ := −Ccl[Aclξ(t − d) + Acldξ(t − 2d) + ω(t − d)
]

to be the output of the nominal system for which

‖ζ̃[t0, t ]‖p,B
ζ̃
≤ Kn‖ψξ‖d,B + γn‖(e, ω)[t0, t ]‖p (4)
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METHODOLOGY

STABILIZING BROADCASTING INTERVALS

THEOREM

Suppose the communication link delay d for the MAS (1)-(2) yields (4)
for some p ∈ [1,∞]. If the broadcasting intervals τ j

i , i ∈ N, j ∈ {1, . . . ,N},
satisfy (I) and (II) for some λ > 0 and M > 1 such that 2

λ

√
Mγn < 1, then

the MAS (1)-(2) is Lp-stable from ω to (ζ̃,e) w.r.t. (B, 0ne ) and with bias.

we can always choose τ j
i ’s such that

(I) τ j
i

(
λ+ r + λ1Me−λτ

j
i
)
< ln M, and

(II) τ j
i

(
λ+ r +

λ1
λ2

eλd
)
< − lnλ2,

with r > 0 being an arbitrary constant, λ1 := N‖CclAcle‖2

r and
λ2 := N−1

N .
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METHODOLOGY

STABILIZING BROADCASTING INTERVALS

COROLLARY

Suppose the conditions of the theorem hold and ξ is Lp-detectable
from (e, ω, ζ̃) w.r.t. B. Then the MAS (1)-(2) is Lp-stable with bias w.r.t.
(B, 0ne ) from ω to (ξ,e).
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SUBOPTIMAL INTERVALS

LEAST SQUARE POLICY ITERATION (LSPI) I

LSPI state-action approximate value function is

Q̂(x(ti), τ(ti)) = Φ>
(
x(ti), τ(ti)

)
ακ, (5)

where
Φ
(
x(ti), τ(ti)

)
= ψ(τ(ti))⊗ φ(x(ti))

is the Kronecker product of the basis function vectors ψ(τ(ti)) and
φ(x(ti)) formed with Chebyshev polynomials while ακ is being
learned
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SUBOPTIMAL INTERVALS

LEAST SQUARE POLICY ITERATION (LSPI) II

define τ(ti) := ti+1 − ti

decision τ(ti) ∈ A is given by

τ(ti) = hκ
(
x(ti)

)
,

where

hκ
(
x(ti)

)
=

{
u.r.a. ∈ A every ε iterations,
hκ
(
x(ti)

)
otherwise,

where “u.r.a." stands for “uniformly chosen random action" and
yields exploration every ε steps while hκ(x(ti)) is the policy
obtained according to

hκ(x(ti)) ∈ arg min
u

Q̂
(
x(ti), τ(ti)

)
(6)
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SUBOPTIMAL INTERVALS

LEAST SQUARE POLICY ITERATION (LSPI) III

ακ is updated every κ ≥ 1 steps from the projected Bellman
equation for model-free policy iteration

Γiακ = γΛiακ + zi ,

where γ is from (3) and

Γ0 = βΓI, Λ0 = 0, z0 = 0,

Γi = Γi−1 + φ
(
x(ti), τ(ti)

)
φ
(
x(ti−1), τ(ti−1)

)>
,

Λi = Λi−1 + φ
(
x(ti), τ(ti)

)
φ
(
x(ti),h(x(ti+1))

)>
,

zi = zi−1 + φ
(
x(ti), τ(ti)

)
r(ti),

where Γi , Λi and zi are updated at every iteration step i

new ακ improves the Q-function (5)

improved policies (in the sense of Problem) are obtained from (6)
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VALIDATION

AR.DRONE PARROT QUADCOPTER IDENTIFICATION

a group of four agents with identical dynamics

ξ̇i =

[
0 1
0 −Tp

]
ξi +

[
0

Kp

]
ui + ωi ,

ζi =
[
0.05 0.025

]
ξi ,

where Kp = 5.2 and Tp = 0.38

communication delay is d = 0.104 s
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VALIDATION

SIMULATION PARAMETERS

select K1 = . . . = K4 = 0.5 in (2)

τ j
i ∈ A := [τ , τ ]

the theorem yields τ = 0.04 s, while we choose τ = 10−5 s

tuning parameters for LSPI are: κ = 2 and ε = 50

we choose X = [−30, 30]

cost function parameters: γ1 = . . . = γ4 = 0.99, P2 = P3 = 5I2,
P4 = 5I3, R1 = . . . = R4 = 5 and S1 = . . . = S4 = 20
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VALIDATION

NUMERIC RESULTS I
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NUMERIC RESULTS II
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SUMMARY

CONCLUDING REMARKS

optimal intermittent feedback problem in MASs

a goal function that captures local MAS performance vs. agent
lifetime trade-offs

first, compute provably stabilizing upper-bounds on agents’
broadcasting intervals

second, bring together estimation (KF) and an online model-free
LSPI method to tackle coupled partially observable DP problems

directed and unbalanced communication topologies

large delays
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CONDYS:EQUIPMENT
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Thank you for your attention!
Questions?!
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