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The turnpike property Motivation

Many control problems arising in engineering, biomedicine and social
sciences, lead to natural questions of control in long time horizons.

1 Sustainable growth

2 Cronical diseases

3 New generation of supersonic aircrafts

Challenges:

1 Develop specific tools for long time control horizons.

2 Build numerical schemes capable of reproducing accurately the
control dynamics in long time intervals (geometric integration,
asymptotic preserving schemes).
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The turnpike property Turnpike

Origins

Although the idea goes back to John von Neumann in 1945, Lionel W.
McKenzie traces the term to Robert Dorfman, Paul Samuelson, and
Robert Solow’s ”Linear Programming and Economics Analysis” in 1958,
referring to an American English word for a Highway:

... There is a fastest route between any two points; and if the
origin and destination are close together and far from the
turnpike, the best route may not touch the turnpike. But if the
origin and destination are far enough apart, it will always pay to
get on to the turnpike and cover distance at the best rate of
travel, even if this means adding a little mileage at either end.
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The turnpike property Turnpike

Tunrpike property ≡ Asymptotic simplification

The turnpike property...

1 ... ensures that optimal strategies for the steady-state problem lead to
nearly optimal ones for the time-dependent dynamics.

2 ... is employed systematically much beyond the class of problems for
which the principle can be proved to hold rigorously.

3 ... can be of use in many contexts such as mesh adaptivity,
parameter-dependent problems, etc.

4 ... it yields a method to ensure robust control, independent of the
initial datum under consideration.
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The turnpike property Turnpike

Examples where controls seem to fail the turnpike property
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Typical dynamics of controls for wave and heat like equations, as solutions
of the corresponding adjoint systems.
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The turnpike property Turnpike

The control problem for the heat equationa

aJoint work with M. Gugat, V. Hernández-Santamaria, M. Lazar, A.
Porretta, E. Trélat...

Let n ≥ 1 and T > 0, Ω be a simply connected, bounded domain of Rn

with smooth boundary Γ, Q = (0,T )× Ω and Σ = (0,T )× Γ:
yt −∆y = f 1ω in Q
y = 0 on Σ
y(x , 0) = y0(x) in Ω.

(1)

1ω = the characteristic function of ω of Ω where the control is active.
We assume that y0 ∈ L2(Ω) and f ∈ L2(Q) so that (1) admits a unique
solution

y ∈ C
(
[0,T ] ; L2(Ω)

)
∩ L2

(
0,T ;H1

0 (Ω)
)
.

y = y(x , t) = solution = state, f = f (x , t) = control

E. Zuazua (DeustoTech - UAM - UPMC) Parameter depending and turnpike control Zagreb, November 2017 9 / 38



The turnpike property Turnpike

We want to minimise the cost:

J(f ) =
1

2

∫ T

0

∫
ω
f 2dxdt +

1

2

∫
Ω
|y(x ,T )− yd |2dx (2)

making a compromise between reaching the target ud and energy
consumption f .
The classical optimality system (Pontryaguin’s principle) guarantees that
the control is of the form

f = ϕ

where ϕ is the solution of the adjoint equation:
−ϕt −∆ϕ = 0 in Q
ϕ = 0 on Σ
ϕ(T ) = y(T )− yd in Ω.

(3)

Lack of turnpike?

E. Zuazua (DeustoTech - UAM - UPMC) Parameter depending and turnpike control Zagreb, November 2017 10 / 38



The turnpike property Turnpike

Better balanced controls

Let us now consider the control f minimising a compromise between the
norm of the state and the control among the class of admissible controls:

min
1

2

[∫ T

0

∫
Ω
|y |2dxdt +

∫ T

0

∫
ω
|f |2dxdt +

1

2

∫
Ω
|y(x ,T )− yd |2dx

]
.

Then the Optimality System reads

yt −∆y = −ϕ1ω in Q

y = 0 on Σ

y(x , 0) = y0(x) in Ω

−ϕt −∆ϕ =y in Q

ϕ = 0 on Σ.

ϕ(T ) = y(T )− yd in Ω.

We now observe a coupling between ϕ and y on the adjoint state equation!
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The turnpike property Turnpike

New Optimality System Dynamics

What is the dynamic behaviour of solutions of the new fully coupled OS?
For the sake of simplicity, assume ω = Ω.
The dynamical system now reads

yt −∆y = −ϕ

ϕt + ∆ϕ = −y

This is a forward-backward parabolic system.
A spectral decomposition exhibits the characteristic values

µ±j = ±
√

1 + λ2
j

where (λj)j≥1 are the (positive) eigenvalues of −∆.
Thus, the system is the superposition of growing + diminishing real
exponentials.
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The turnpike property Turnpike

The turnpike property for the heat equation

This new dynamic behaviour, combining exponentially stable and unstable
branches, is compatible with the turnpike behavior.
Controls and trajectories exhibit the expected dynamics:

E. Zuazua (DeustoTech - UAM - UPMC) Parameter depending and turnpike control Zagreb, November 2017 13 / 38



The turnpike property Turnpike

In this particular example turnpike means that optimal pairs (f (t), y(t))
are exponentially close to the steady-state optimal pair characterised as
the minima for the functional

Js(g) =
1

2

∫
ω
g2dxdt +

1

2

∫
Ω

[
z2 + |z(x)− zd |2

]
dx (4)

where z = z(x) solves {
−∆z = g1ω in Ω
z = 0 on ∂Ω,

(5)

Namely

||y(t)− z ||+ ||f (t)− g || ≤ C [exp(−µt) + exp(−µ(T − t))]

if T >> 1.
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The turnpike property Turnpike

The turnpike path
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Averaged control

Consider the transport equation with unknown velocity v ,

ft + vfx = 0,

and take averages with respect to v . Then

g(x , t) =

∫
f (x , t; v)ρ(v)dv

then, for the Gaussian density ρ:

ρ(v) = (4π)−1/2 exp(−v2/4)

g(x , t) = h(x , t2); ht − hxx = 0.

One can then employ parabolic techniques based on Carleman
inequalities.12

1E. Z., Averaged controllability, Automatica, 50 (2014)
2Q. Lü & E. Z. Average Controllability for Random Evolution Equations, JMPA,

2016.
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Weak greedy algorithms

3 Assume that the system depends on a parameter ν ∈ K ⊂ Rd , d ≥ 1, K
being a compact set, and controllability being fulfilled for all values of ν.{

x ′(t) = A(ν)x(t) + Bu(t), 0 < t < T ,
x(0) = x0.

(6)

Controls u(t, ν) are chosen to be of minimal norm satisfying the
controllability condition:

x(T , ν) = x1, (7)

and lead to a manifold of dimension d in [L2(0,T )]M :

ν ∈ K ⊂ Rd → u(t, ν) ∈ [L2(0,T )]M .

This manifold inherits the regularity of the mapping ν → A(ν).

To diminish the computational cost we look for the very distinguished
values of ν that yield the best possible approximation of this manifold.

3M. Lazar & E. Zuazua, Greedy controllability of finite dimensional linear systems,
Automatica, 2017.
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Weak greedy algorithms

Naive versus smart sampling of K
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Weak greedy algorithms

Our work relies on recent ones on greedy algorithms and reduced bases
methods:

A.Cohen, R.DeVore, Kolmogorov widths under holomorphic
mappings, IMA Journal on Numerical Analysis, to appear

A.Cohen, R.DeVore, Approximation of high-dimensional parametric
PDEs, arXiv preprint, 2015.

Y.Maday, O.Mula, A.T. Patera, M.Yano, The generalized
Empirical Interpolation Method: stability theory on Hilbert spaces with an
application to the Stokes equation, submitted

M. A. Grepl, M Kärche, Reduced basis a posteriori error bounds for
parametrized linear-quadratic elliptic optimal control problems, CRAS
Paris, 2011.

S. Volkwein, PDE-Constrained Multiobjective Optimal Control by
Reduced-Order Modeling, IFAC CPDE2016, Bertinoro.
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Weak greedy algorithms

Description of the Method

We look for the realisations of the parameter ν ensuring the best possible
approximation of the manifold of controls

ν ∈ K ⊂ Rd → u(t, ν) ∈ [L2(0,T )]M

(of dimension d in [L2(0,T )]M) in the sense of the Kolmogorov width.4

Greedy algorithms search for the values of ν leading to the most
distinguished controls u(t, ν), those that are farther away one from each
other.

Given an error ε, the goal is to find ν1, ...., νn(ε), so that for all parameter
values ν the corresponding control u(t, ν) can be approximated by a linear
combination of u(t, ν1), ..., u(t, νn(ε)) with an error ≤ ε.

An of course to do it with a minimum number n(ε).
4Ensure the optimal rate of approximation by means of all possible finite-dimensional

subspaces.
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Weak greedy algorithms

Step 1. Characterization of minimal norm controls by
adjoints

The adjoint system depends also on the parameter ν:

−ϕ′(t) = A∗(ν)ϕ(t), t ∈ (0, T ); ϕ(T ) = ϕ0. (8)

The control is
u(t, ν) = B∗ϕ(t, ν),

where ϕ(t, ν) is the solution of the adjoint system associated to the
minimizer of the following quadratic functional in RN:

Jν
(
ϕ0(ν)

)
=

1

2

∫ T

0
|B∗ϕ(t, ν)|2 dt− < x1, ϕ0 > + < x0, ϕ(0, ν) > .

The functional is continuous and convex, and its coercivity is guaranteed
by the Kalman rank condition that we assume is satisfied for all value of ν.
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Weak greedy algorithms

Step 2. Controllability distance

Given two parameter values ν1 and ν2, how can we measure the distance
between u(t, ν1) and u(t, ν2)?

Roughly: Compute the residual

||x(T , ν2)− x1||
for the solution of the state equation ν2 achieved by the control u(t, ν1).

More precisely: Solve the Optimality System (OS):

−ϕ′(t) = A∗(ν2)ϕ(t) t ∈ (0, T ); ϕ(T ) = ϕ0
1.

x ′(t) = A(ν2)x(t) + BB∗ϕ(t, ν2), 0 < t < T , x(0) = x0.

Then ∣∣∇Jν2(ϕ0
1)
∣∣ = ||x(T , ν2)− x1|| ∼ ||ϕ0

1 − ϕ0
2||.

Within the class of controls of minimal L2-norm, given by the adjoint,
u = B∗ϕ, the residual ||x(T , ν)− x1|| is a measure of the distance to the
exact control, and also to the true minimiser.
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Weak greedy algorithms

Offline algorithm

Step 3. Initialisation of the weak-greedy algorithm. Choose any ν in K ,
ν = ν1, and compute the minimizer of Jν1 . This leads to ϕ0

1.

Step 4. Recursive choice of ν ′s.
Assuming we have ν1, ..., νp, we choose νp+1 as the maximiser of

max
ν∈K

min
φ∈span[ϕ0

j , j=1,...,p]
|∇Jν(φ)|

We take νp+1 as the one realizing this maximum.
Note that

|∇Jν(φ)| = ||x(T , ν)− x1||.

x(T , ν) being the solution obtained by means of the control
u = B∗φ(t, ν), φ being the solution of the adjoint problem associated to
the initial datum φ0 in span[ϕ0

j , j = 1, ..., p].

Step 5. Stopping criterion. Stop if the max ≤ ε.
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Weak greedy algorithms

Online part

Step 6. For a specific realisation of ν solve the finite-dimensional reduced
minimisation problem:

min
φ∈span[ϕ0

j , j=1,...,p]
Jν(φ)

and choose the control u(t, ν). This minimises yields:

u(t, ν) = B∗ϕ(t, ν),

ϕ(t, ν) being the solution of the adjoint problem with datum φ at t = T .
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Weak greedy algorithms

The same applies when K is infinite-dimensional provided its Kolmogorov
width decays polynomially.

Theorem

The weak-greedy algorithm above leads to an optimal approximation
method.
More precisely, if the set of parametres K is finite-dimensional, and the
map ν → A(ν) is analytic, for all α > 0 there exists Cα > 0 such that for
all other values of ν the control u(·, ν) can be approximated by linear
combinations of the weak-greedy ones as follows:

dist(u(·, ν); span[u(·; νj) : j = 1, ..., k]) ≤ Cαk
−α.

5

5The approximation of the controls has to be understood in the sense above: Taking
the control given by the corresponding adjoint solution, achieved by minimising the
functional J over the finite-dimensional subspace generated by the adjoints for the
distinguished parameter-values.
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Weak greedy algorithms

Potential improvements

1 Find cheaper surrogates. Is there a reduced model leading to lower
bounds on controllability distances without solving the full Optimality
System?

2 All this depends on the initial and final data: x0, x1.
Can the search of the most relevant parameter-values ν be done
independent of x0, x1?
In other words, get lower bounds on the controllability distances
between (A1,B1) and (A2,B2).
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Numerical experiments

Semi-discrete wave equation

1 Finite difference approximation of the 1− d wave equation with 50
nodes in the space-mesh.

2 Unknown velocity v ranging within [1,
√

10].
3 Discrete parameters taken over an equi-distributed set of 100 values
4 Boundary control
5 Sinusoidal initial data given: y0 = sin(πx); y1 ≡ 0. Null final target.
6 Time of control T = 3.
7 Weak-greedy requires 20 snapshots.
8 Approximate control with error 0.5 in each component.
9 The algo stops after 24 iterations.

10 Offline time: 2 312 seconds (personal notebook with a 2.7 GHz
processor and DDR3 RAM with 8 GB and 1,6 GHz).

11 Online time for one realisation ν: 7 seconds
12 Computational time for one single parameter value with standard

methods: 51 seconds.
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Numerical experiments

Choose a number at random
within [1, 10]

But, please, choose π
The greedy algo leads to:
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Numerical experiments

Semi-discrete heat equation

1 Finite difference approximation of the 1− d heat equation with 50
nodes in the space-mesh.

2 Unknown diffusivity v ranging within [1, 2].

3 Discrete parameters taken over an equi-distributed set of 100 values

4 Boundary control

5 Sinusoidal initial data given: y0 = sin(πx). Null final target.

6 Time of control T = 0.1.

7 Weak-greedy requires 20 snapshots.

8 Approximate control with error 10−4 in each component.

9 The algo stops after 3 iterations: ν = 1.00, 1.18, 1.45.

10 Offline time: 213 seconds.

11 Online time for one realisation ν =
√

2: 1.5 seconds

12 Computational time for one single parameter value with standard
methods: 37 seconds.
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Numerical experiments
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Numerical experiments

Open problems and perspectives

The method be extended to PDE. But analyticity of controls with
respect to parameters has to be ensured to guarantee optimal
Kolmogorov widths. This typically holds for elliptic and parabolic
equations. But not for wave-like equations.
Indeed, solutions of

ytt − v2yxx = 0

do not depend analytically on the coefficient v .
One expects this to be true for heat equations in the context of
null-controllability. Still this needs to be rigorously proved.
Cheaper surrogates need to be found so to make the recursive choice
process of the various ν ′s faster.
Find surrogates for the controllability distance between two PDEs (of
the same type).

1 For wave equations in terms of distances between the dynamics of the
Hamiltonian systems of bicharacteristic rays?

2 For 1− d wave equations in terms of spectral distances?
3 For heat equations?
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Greedy algos for resolvents of elliptic operators

Problem formulation
M. Choulli & E. Z. CRAS Paris, 2016

To better understand the complexity of the problem of applying the greedy
methodology for control systems, independently of the initial and final
data under consideration, it is natural to consider the following diffusive
equation as a model problem.

Let Ω be a bounded domain of Rn, n ≥ 1. Fix 0 < σ0 < σ1 and consider
the class of scalar diffusivity coefficients

Σ = {σ ∈ L∞(Ω); σ0 ≤ σ ≤ σ1 a.e. in Ω}.

For σ ∈ Σ, let Aσ : H1
0 (Ω)→ H−1(Ω) be the bounded operator given by

Aσu = −div(σ∇u).

The inverse or resolvent operator Rσ : H−1(Ω)→ H1
0 (Ω).

The goal is to implement the greedy algo in the class of resolvent
operators.
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Greedy algos for resolvents of elliptic operators

The existing theory gives the answer for a given right hand side term:

−div(σ∇u) = f .

But we are interested on searching the most representative realisations of
the resolvents as operators, independently of the value of f .
The analog at the control theoretical level would be to do it for the inverse
of the Gramian operators rather than proceeding as above, for each
specific data to be controlled.

The question under consideration is. How to find a surrogate (lower
bound) for

dist(Rσ, span[Rσ1 , ...,Rσk ])

?

The question is easy to solve when dealing with two resolvents R1 and R2.
But seems to become non-trivial in the general case.

This leads to a new class of Inverse Problems
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Greedy algos for resolvents of elliptic operators

Distance between two resolvents

It is easy to get a surrogate for the distance between two resolvents R1

and R2 corresponding to two different diffusivities σ1 and σ2:

A1 − A2 = A1(R2 − R1)A2,∣∣∣A1 − A2

∣∣∣ ≤ σ2
1

∣∣∣R1 − R2

∣∣∣.
〈(A1 − A2)u, u〉−1,1 =

∫
Ω

(σ1 − σ2)|∇u|2dx ,∫
Ω

(σ1 − σ2)|∇u|2dx ≤
∣∣∣A1 − A2

∣∣∣∣∣∣u∣∣∣2
H1

0 (Ω)
≤ σ2

1

∣∣∣R1 − R2

∣∣∣∣∣∣u∣∣∣2
H1

0 (Ω)
.

Now taking u = uε so that |∇uε|2 constitutes an approximation of the
identity (for each x0 ∈ Ω) we get

||σ1 − σ2||∞ ≤ σ2
1

∣∣∣R1 − R2

∣∣∣.
This can be understoof in the context of Inverse Problems: The resolvent
determines the diffusivity, with Lipschitz continuous dependence.
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Greedy algos for resolvents of elliptic operators

1d

Unfortunately, this argument does not seem to apply for estimating the
distance to a subspace

R1 −
k∑

j=1

αjRj .

This is a non-standard inverse problems. We are dealing with linear
combinations of k + 1 resolvents and not only 2 as in classical
identification problems

In 1− d the problem can be solved, thanks to the explicit representation
of solutions6

− (σ(x)ux)x = f in (0, 1), ux(0) = 0 and u(1) = 0. (9)

ux(x) = − 1

σ(x)

∫ x

0
f (t)dt = −Tσf a.e. (0, 1). (10)

6Very much as in the context of homogenisation
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Greedy algos for resolvents of elliptic operators

||Rσ − Rσ̃||∗ =
∣∣∣ 1

σ̃(x)
− 1

σ(x)

∣∣∣
L∞((0,1))

.

(
Rτ f −

N∑
i=1

aiRi f

)
x

=

(
N∑
i=1

ai
σi (x)

− 1

τ(x)

)∫ x

0
f (t)dt a.e. (0, 1) (11)

∣∣∣Rτ − N∑
i=1

aiRi

∣∣∣
∗

=
∣∣∣ N∑
i=1

ai
σi (x)

− 1

τ(x)

∣∣∣
L∞((0,1))

. (12)

This means that, in this 1d context, it suffices to apply the greedy algo in
L∞ within the class of coefficients 1/σ(x).

Multi-dimensional extension?
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Back to control

Consider control systems of the form{
x ′(t) = Ajx(t) + Bu(t), 0 < t < T ,
x(0) = x0,

(13)

j = 1, ..., k.
Control operators:

Pj(x
0) = uj(t), j = 1, ...,K .

Find a surrogate for

dist(Pj , span[P`; ` 6= j ]) = sup||x0||=1dist(uj(t), span[u`(t) : ` 6= j ]).

We want an equivalent measure, but easier to be computed.
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Back to control
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