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Resolvent norm convergence, Bloch formulation and Gelfand
transform

We look the problem

− div(A(
x
ε

)∇u) + u = f ,

on Rn, f ∈ L2(Rn), u ∈ H1(Rn). A is assumed to be one
periodic symmetric, positive definite and bounded, i.e., there
exist α, β > 0

α|ξ|2 ≤ A(x)ξ · ξ ≤ β|ξ|2, ∀x , ξ ∈ Rn.

Aεu := − div A(
x
ε

)∇u.

Note that
(Aε + I)−1 : L2(Rn)→ L2(Rn)

is a continuous operator.



Resolvent norm convergence, Bloch formulation and Gelfand
transform

The limit problem is given by (homogenization theory)

− div(A0∇u) + u = f ,

A0ξ · ξ = min
ϕ∈H1(Y)

ˆ
Y

A(y)(ξ +∇ϕ) · (ξ +∇ϕ),

where Y is a flat torrus in Rn.

A0 = − div(A0∇u).

Claim: If uε is a solution of ε-problem that corresponds to f ε

and if f ε ⇀ f in L2, then the uε ⇀ u in H1, where u is a solution
of zero problem.

The result can be quantified.



Resolvent norm convergence, Bloch formulation and Gelfand
transform

In a series of papers Birman, Suslina proved:

‖(Aε + I)−1 − (A+ I)−1‖L2(Rn)→L2(Rn) ≤ Cε,

‖(Aε + I)−1 − (A+ I)−1 − εK (ε)‖L2(Rn)→H1(Rn) ≤ Cε,

where K (ε) is a corrector.
Later this was used for the estimates on finite domain by
Suslina (2012), when one needs to include estimates of
boundary layer (previous works with less sharp estimate by
Zhikov, Pastukhova by Steklov smoothing, 2005, Griso by
unfolding 2004).



Resolvent norm convergence, Bloch formulation and Gelfand
transform

It can be shown that this is equivalent to

‖exp(−tAε)− exp(−tA)‖|L2(Rn)→L2(Rn) ≤ C
ε√
t
.

This kind of estimates can be proven by looking corresponding
parabolic problem and by spectral analysis (Zhikov &
Pastukhova). There is also an interesting result of Ortega and
Zuazua (2000) on approximation of operator potential e−tÃ as
t →∞, where Ã comes from a periodic problem.



Resolvent norm convergence, Bloch formulation and Gelfand
transform

We explain the approach of Cherednichenko, Cooper (ARMA
2016) in the context of high contrast.

− div(A(
x
ε

)∇u) + u = f ,

on Rn, f ∈ L2(Rn), u ∈ H1(Rn). A is assumed to be 1-periodic:

A = χ1A1 + χ0ε
2A0 on Y,

where χ0 is a characteristic function of e.g. ball B ⊂ (0,1)n,
χ1 = 1− χ0, A0,A1 are symmetric, uniformily elliptic.
The qualitative analysis of these kind of operators was given by
Zhikov. The limit operator is defined on the subspace of
L2(Rn × Y) and its spectrum has band gap structure.



Resolvent norm convergence, Bloch formulation and Gelfand
transform

Cherednichenko, Cooper found the operator Ãε which is
simpler then the starting one and which satisfies

‖(Aε + I)−1 − (Ãε + I)−1P̃ε‖L2(Rn)→L2(Rn) ≤ Cε.

The operator Ãε is still ε- dependent and P̃ε is a kind of
projection. Resolvent approximation implies the approximation
of spectrum of the operator Aε in the Hausdorff sense. The
operator Ãε differs from the limit operator obtained by
qualitative analysis of Zhikov, since it contains more
information. However, it is still computionally much cheaper
than the original one. The method offers the way not only to
prove the estimates, but also to change (or slightly perturb) the
expected "limit" operator.



Resolvent norm convergence, Bloch formulation and Gelfand
transform

Q′ = [−π, π)n, Q = [0,1)n.

We define the isometry Uε : L2(Rn)→ L2(ε−1Q′ ×Q
)

by

(Uεf )(θ, y) =

(
ε2

2π

)n/2 ∑
n∈Zn

f
(
ε(y + n)

)
exp
(
−iεθ(y + n)

)
,

θ ∈ ε−1Q′, y ∈ Q.

This isometry Uε = GεT ε is a composition of usual scaled
Gelfand transform Gε : L2(Rn)→ L2(ε−1Q′ × εQ

)
:

(Gεf )(θ, z) =
( ε

2π

)n/2 ∑
n∈Zn

f
(
z +εn

)
exp
(
−iεθ(y +n)

)
, z ∈ εQ,

and the scaling transform T ε : L2(ε−1Q′× εQ)→ L2(ε−1Q′×Q)

(T εh)(θ, y) = εn/2h(θ, εy).



Resolvent norm convergence, Bloch formulation and Gelfand
transform

Notice that

((Uε)−1f )(x) =

(
ε2

2π

)−n/2 ˆ

ε−1[−π,π)2

f
(
θ,

x
ε

)
exp
(
iθ·x

)
dθ, x ∈ Rn.

Then we have that

Uε(Aε + I)−1(Uε)−1 =

ˆ ⊕
ε−1Q′

(Bε,θ + I)−1dθ,

where Bε,θ is the operator generated by the sesquilinear form

bε,θ(u, v) =

ˆ
Q

(ε−2A1+A0)(∇+iεθ)u·(∇+ iεθ)v , u, v ∈ H1
#(Q)

or

b̃ε,θ(u, v) =

ˆ
Q

(ε−2A1 + A0)∇u · ∇v , u, v ∈ H1
χ(Q), χ = εθ.



Resolvent norm convergence, Bloch formulation and Gelfand
transform

For every parameter θ ∈ ε−1Q′ we obtain a differential equation
on a compact domain Q (the equation can be looked with
periodic or quasi-periodic boundary condition). This is a
standard approach for periodic problems. In this way one can
divide the spectrum of the original operator (on a non-compact
domain) as a union of continuum family of spectrum of
operators on a compact domain. One can even characterize
generalized eigenfunctions of the original operator.
The novelty of the approach of Cherednichenko and Cooper
consists in finding the operators Bε,θhom such that

‖(Bε,θ + I)−1 − (Bε,θhom + I)−1Pε‖L2(Q)→L2(Q) ≤ Cε,

where C is independent of θ and Pε is a projection.



Resolvent norm convergence, Bloch formulation and Gelfand
transform

The methodology consists in doing formal asymptotics for the
solution of the equation

uεθ =
∞∑

n=0

εnu(n)
θ , u(n)

θ ∈ H1
#(Q).

plugging it into equation and obtaining the approximate
solution. The difficulties arise in the fact that one has to do the
estimates and the fact that there are two changing parameters
(ε and θ) and that there are no rules (ansatz) how to do this
asymptotics in the way to obtain the estimates. They had to
analyze separately so called inner region (|θ| ≤ 1), intermediate
region 1 ≤ |θ| ≤ ε−1/2) and upper region |θ| ≥ ε−1/2. In the
case without high contrast upper region can be neglected, i.e.,
the good approximation of the solution is zero.



Problem formulation

ˆ
Ωh

A
(

x1

ε
,
x2

ε

)
sym∇Uh : sym∇Φh +ρh

ˆ
Ωh

Uh ·Φh =

ˆ
Ωh

F h ·Φh.

Here

Ωh = R2 × (−h/2,h/2), Uh,Φh ∈ H1(Ωh,R3), F h ∈ L2(Ωh,R3).

A is one periodic, bounded and coercive on symmetric
matrices, i.e., there exist α, β > 0 such that

α|M|2 ≤ A(y1, y2)M ·M ≤ β|M|2, ∀(y1, y2) ∈ [0,1]2,M ∈ R3×3
sym .



Problem formulation
We transform the problem on the domain Ω = R2 × I,
I = (−1

2 ,
1
2) by doing change x3 = xh

3 /h. We also do the scaling
F h = (h2f1,h2f2,h3f3), Uh = (h2u1,h2u2,h3u3), ρh = h2. We
also scale the test functions in the same way, do the Gelfand
transform and scale in-plane components yα = xα/ε, for
α = 1,2. After that we obtain:

1
h2

ˆ
Q

A(y) sym
(
∇̃ε,h,θ(hu1,hu2,u3)

)
: sym

(
∇̃ε,h,θ(hϕ1,hϕ2, ϕ3)

)
+h2
ˆ

Q
uαϕα +

ˆ
Q

u3ϕ3 =

ˆ
Q

fi ϕi , ∀ϕ ∈ H1
#(Q,C3).

Here
Q = Qr × I, Qr = (0,1)2, θ ∈ ε−1(−π, π)2.

(∇̃ε,h,χv)iα :=
1
ε

(∂α + iχα)vi ,

(∇̃ε,h,χv)i3 :=
1
h
∂3vi , α = 1,2, i = 1,2,3.



Problem formulation

We will look the regime ε = h. The equations suggest that we
take ũα = εuα. We obtain:

1
ε4

ˆ
Q

A(y) sym∇̃y ,x3(ũ1, ũ2,u3) : sym∇̃y ,x3(ϕ1, ϕ2, ϕ3)

+

ˆ
Q

ũαϕα +

ˆ
Q

u3ϕ3 =
1
ε

ˆ
Q

fαϕα +

ˆ
Q

f3ϕ3, ∀ϕ ∈ H1
χ(Q,C3).

Here

(∇̃u)iα = ∂αui + iχαui , (∇̃u)i3 = ∂3ui , α = 1,2, i = 1,2,3.

This change means that we have to identify the in-plane
components up to order ε2 in L2 norm. The equations can be
looked on the space of χ- quasiperiodic functions H1

χ(Q,C3) in
which case we replace ∇̃ by ∇.



Important estimates-Korn type inequalities
By using Korn’s inequality and boundary condition we can show
that for u ∈ H1

χ(Q,C3) we have∥∥u1 − (c1 − iχ1c3x3) exp
(
i(χ, y)

)∥∥
H1(Q)

. ‖sym∇u‖L2(Q),∥∥u2 − (c2 − iχ2c3x3) exp
(
i(χ, y)

)∥∥
H1(Q)

. ‖sym∇u‖L2(Q),∥∥u3 − c3 exp
(
i(χ, y)

)∥∥
H1(Q)

. ‖sym∇u‖L2(Q),

for some c1, c2, c3 ∈ C which satisfy

max
{
|c1|, |c2|

}
. min

{
1
|χ1|

,
1
|χ2|

}
‖sym∇u‖L2(Q),

|c3| . min
{

1
|χ1|2

,
1
|χ2|2

}
‖sym∇u‖L2(Q)

The following is satisfied

χ 6= 0, sym∇u = 0 =⇒ u = 0,
χ = 0, sym∇u = 0 =⇒ u = Ax + b, A ∈ C3×3

skew,b ∈ C3.



Important estimates-apriori estimates intermediate region
We look intermediate region |θ| ≥ 1 and introduce

D(θ) := max
{

min
{

1
|θ1|

,
1
|θ2|

}
,min

{
1
|θ1|2

,
1
|θ2|2

}}
.

The solution u = (ũ1, ũ2,u3) ∈ H1
χ(Q,C3) satisfies∥∥ũ1 − (c1 − iχ1c3x3) exp

(
i(χ, y)

)∥∥
H1(Q)

. D(θ)ε2‖f‖L2(Q),∥∥ũ2 − (c2 − iχ2c3x3) exp
(
i(χ, y)

)∥∥
H1(Q)

. D(θ)ε2‖f‖L2(Q),∥∥u3 − c3 exp
(
i(χ, y)

)∥∥
H1(Q)

. D(θ)ε2‖f‖L2(Q).,

where

max{|c1|, |c2|} . D(θ) min
{

1
|θ1|

,
1
|θ2|

}
ε‖f‖L2(Q),

|c3| . D(θ) min
{

1
|θ1|2

,
1
|θ2|2

}
‖f‖L2(Q).



Important estimates-apriori estimates
Comments:

I In the upper region to obtain the solution of the appropriate
precision it is enough to find some equation for that is
satisfied by c1, c2, c3 ∈ C that satisfy the above
approximation;

I These estimates imply that for |θ| ≥ ε−1/2 we can take
c1 = c2 = c3 = 0. This does not happen in high contrast
case (Cherednichenko, Cooper);

I Inner region is more complex in the asymptotics since it
contains singularity. In order to deal with these problems
easier we divide the problem in three cases. We will
additionally have to assume some planar symmetries of
the elastic tensor. Moreover it will be seen that we will need
more from the solution than identifying just three constants.
This is very unusual for the homogenization problems;

I Apriori estimates are not used in the asymptotic procedure.
They just serve as a help to guess what one should obtain
in the "limit".



Important estimates-apriori estimates inner region, vertical forces

We additionally assume “planar" material symmetries:

Aαβγ3 = 0, Aα3333 = 0 ∀α, β, γ ∈ {1,2}.

If we take f1 = f2 = 0 we have the following estimates∥∥ũ1 − (c1 − iχ1c3x3) exp
(
i(χ, y)

)∥∥
H1(Q)

. ε2‖f3‖L2(Q),∥∥ũ2 − (c2 − iχ2c3x3) exp
(
i(χ, y)

)∥∥
H1(Q)

. ε2‖f3‖L2(Q),∥∥u3 − c3 exp
(
i(χ, y)

)∥∥
H1(Q)

≤ ε2‖f3‖L2(Q),

max
{
|c1|, |c2|, |c3|

}
. ‖f3‖L2(Q).

In the case of vertical forces in the inner region one should not
expect difficulties.



Important estimates-apriori estimates inner region, horizontal
forces

The case of horizontal forces f3 = 0 we divide into two
subcases: forces odd in x3 variable and forces even in x3
variable. For the odd forces we have the following estimates∥∥ũ1 + iχ1c3x3 exp(i(χ, y))

∥∥
H1(Q)

. ε2∥∥(f1, f2)
∥∥

L2(Q)
,∥∥ũ2 + iχ2c3x3 exp(i(χ, y))

∥∥
H1(Q)

. ε2∥∥(f1, f2)
∥∥

L2(Q)
,∥∥u3 − c3 exp(i(χ, y))

∥∥
H1(Q)

. ε2∥∥(f1, f2)
∥∥

L2(Q)
,

|c3| .
∥∥(f1, f2)

∥∥
L2(Q)

.

Planar symmetries of the elasticity tensor are used to conclude
c1 = 0, c2 = 0.



Important estimates-apriori estimates inner region, horizontal
forces

For even planar forces we have the estimates∥∥ũ1 − c1 exp(i(χ, y))
∥∥

H1(Q)
. ε‖f‖L2(Q),∥∥ũ2 − c2 exp(i(χ, y))

∥∥
H1(Q)

. ε‖f‖L2(Q),∥∥u3 − c3 exp(i(χ, y))
∥∥

H1(Q)
. ε‖f‖L2(Q),

max
{
|c1|, |c2|

}
. ε−1‖f‖L2(Q).

Planar symmetries of the elasticity tensor are used to conclude
c3 = 0. This is the problematic part of the inner region since in
this case to obtain the estimates it is not enough to identify
c1, c2, but we need to go further in the expansion. Moreover
c1, c2 are of order ε−1.



Important estimates for the asymptotic expansion
We introduce the space

F (χ) :=




c1 − iχ1c3x3

c2 − iχ2c3x3

c3

exp
(
i(χ, y)

)
: c1, c2, c3 ∈ C


For u ∈ H1

χ(Q,C3), that satisfiesˆ
Q

A(y) sym∇u : sym∇v =

ˆ
Q

f · v ∀v ∈ H1
χ(Q,C3),

we have the following estimates: If f ∈ F (χ)⊥ we have

‖u1‖H1(Q) . min
{

1
|χ1|

,
1
|χ2|

}
‖f‖H−1(Q),

‖u2‖H1(Q) . min
{

1
|χ1|

,
1
|χ2|

}
‖f‖H−1(Q),

‖u3‖H1(Q) . min
{

1
|χ1|2

,
1
|χ2|2

}
‖f‖H−1(Q),



Important estimates for the asymptotic expansion

For general f we have

‖u1‖H1(Q) . min
{

1
|χ1|2

,
1
|χ2|2

}∥∥(f1, f2)
∥∥

H−1(Q)

+ min
{

1
|χ1|3

,
1
|χ2|3

}
‖f3‖H−1(Q),

‖u2‖H1(Q) . min
{

1
|χ1|2

,
1
|χ2|2

}∥∥(f1, f2)
∥∥

H−1(Q)

+ min
{

1
|χ1|3

,
1
|χ2|3

}
‖f3‖H−1(Q),

‖u3‖H1(Q) . min
{

1
|χ1|3

,
1
|χ2|3

}∥∥(f1, f2)
∥∥

H−1(Q)

+ min
{

1
|χ1|4

,
1
|χ2|4

}
‖f3‖H−1(Q).



"Limit" equation

Ciarlet and Kesavan (1981) looked the spectral problem on the
bounded domain Ω = ω × I, where ω ⊂ R2 is open bounded set
with Lipschitz boundary in the case of isotropic homogeneous
plate (clamped plate). In the limit they obtained the folowing
problem: find u3 ∈ H2(ω,R3), u3 = ∂nu3 = 0 on ∂ω that satisfies
ˆ
ω

(
4λµ

3(λ+ 2µ)
∆u3∆v3 +

4µ
3
∂αβu3∂αβv3

)
= 2Λ

ˆ
ω

u3v3,

v3 ∈ H2(ω,R3), v3 = ∂nv3 = 0 on ∂ω.



"Limit" equation
Comments:

I The limit equation is the spectral problem of forth order for
the vertical displacement. It is proved that eigenvalues of
the original problem converge to the eigenvalues of this
limit problem in the Hausdorff sense;

I The fact that we obtain the limit problem only for u3 is the
consequence of scaling for the density and the fact that in
the limit problem (in the case of isotropic media) the
equations for the vertical displacement separate from the
equations of horizontal displacements;

I Ciarlet scaling is the only reasonable scaling for the
bounded domain;

I In the case when we have non-homogeneous elasticity
tensor in x3 direction the separation of horizontal and
vertical displacement does not happen.

I For eigenfunctions the limit horizontal displacement is
u1 = −x3∂1u3, u2 = −x3∂2u3.



"Limit" equation
We look for the solution (m1,m2,m3) ∈ C3 to the identity

Ahom(m1,m2,m3)> · (d1,d2,d3)>

+ε4
(ˆ

Q
(m1 − iχ1x3m3)(d1 − iχ1x3d3)

+

ˆ
Q

(m2 − iχ2x3m3)(d2 − iχ2x3d3) +

ˆ
Q

m3d3

)
= ε3

ˆ
Q

f1(d1 − ix3χ1d3) + ε3
ˆ

Q
f2(d2 − ix3χ2d3) + ε4

ˆ
Q

f3d3 ∀(d1,d2,d3)> ∈ C3,

where for (m1,m2,m3), (d1,d2,d3) ∈ C3 we define

Ahom(m1,m2,m3)> · (d1,d2,d3)>

:=

ˆ
Q

A(y)
(
∇wm + K (χ,m1,m2)− ix3L(χ,m3)

)
:(

K (χ,d1,d2)− ix3L(χ,d3)
)
,



"Limit" equation

where

K (χ,m1,m2) := i

[
χ1m1

1
2(χ1m2 + χ2m1)

1
2(χ1m2 + χ2m1) χ2m2

]
,

L(χ,m3) := im3

[
χ2

1 χ1χ2

χ1χ2 χ2
2

]
.

The corrector wm ∈ H1
#(Q,C3) satisfies

(sym∇)∗ · A(y)∇wm = −(sym∇)∗ · A(y)
(
K (χ,m1,m2)−
ix3L(χ,m3)

)
.



Some remarks about asymptotic procedure

1
ε4

(
sym∇̃y ,x3

)∗ · A(y)sym∇̃y ,x3 ũ + ũ = f ε

ũ = (ũ1, ũ2,u3), f ε = (
1
ε

f1,
1
ε

f2, f3).

In the asymptotic procedure we start from the solution of the
"limit" equation

I In the intermediate region we start from

u0 = (m1 − iχ1x3m3,m2 − iχ2x3m3,m3)>;

I In the inner region in the case of vertical forces or in-plane
forces that are odd in x3 variable we start form

u0 = (−iχ1x3m3,−iχ2x3m3,m3)>;

I In the inner region in the case in-plane forces that are even
in x3 variable we start form

u0 = (m1,m2,0)>;



Some remarks about asymptotic procedure

I We look for the approximate solution
z = u0 + u1 + u2 + . . . that satisfies

1
ε4

(
sym∇̃y ,x3

)∗ · A(y)sym∇̃y ,x3z + z = f ε + Error,

where

‖Error‖H−1(Q) . max{ε6, ε5|θ|4}‖f‖L2(Q).

Then it can be shown by subtraction and estimates that

‖ũα − zα‖H1(Q) . ε2‖f‖L2(Q), ‖u3 − z3‖H1(Q) . ε‖f‖L2(Q);

I The difficulties in the asymptotic procedure arise from the
fact that we have to go very high in precision;

I In the intermediate region and inner region in the case of
vertical forces and odd in-plane forces we can use the
estimates on u1,u2, . . . that tell us that we can take z = u0;



Some remarks about asymptotic procedure

I In the inner region in the case of even in-plane forces we
need to update u0 by adding u1 and ũ1 = C

u1 = iεθ1m1ϕ
1 +

i
2

(εθ2m1 + iεθ1m2)ϕ2 + iεθ2m2ϕ
3,

where the functions ϕi , i = 1,2,3, satisfy

(sym∇)∗ ·A(y) sym∇ϕi = −(sym∇)∗ ·A(y)M1
i ,

ˆ
Q
ϕi = 0.

Here

M1
1 :=

[
1 0

0 0

]
, M1

2 :=

[
0 1

1 0

]
, M1

3 :=

[
0 0

0 1

]
;



Some remarks about asymptotic procedure

I The constant C = (C1,C2,0)> (depending on θ) satisfies
ˆ

Q
A(y)

(
sym∇u2 + (iεθ)(u1 + C)

)
:
(
sym∇ψ + (iεθ)D

)
+ ε4C · D

= −
ˆ

Q
A(y)

(
sym∇u1 + K (χ,m1,m2)

)
: (iεθ)ψ

− ε4
ˆ

Q
(m1,m2,0)> · ψ + ε3

ˆ
Q

(f1, f2,0)> · ψ

∀ψ ∈ H1
#(Q,R3), D = (D1,D2,0)>,

ˆ
Q

u2 = 0;

I Notice that in the case when the elasticity tensor is
constant (independent of y ) we have that u1 = 0, C = 0.
Thus the appearence of these terms in the approximate
problem is only the consequence of inhomogeneties;



Final conclusions
I The "limit" problem in the case f1 = f2 = 0 and under the

assumption of planar symmetries is

1
12

ˆ
R2

A0∇2v : ∇2ψ +
ε2

12

ˆ
R2
∇v · ∇ψ +

ˆ
R2

vψ

=

ˆ
R2

(Cεf3)ψ, ∀ψ ∈ H2(R2),

where A0 is the fourth-order symmetric tensor given by

A0M : M = min
ψ∈H1

#(Q,R3)

ˆ
Q

A(y)
(
M+sym∇ψ

)
:
(
M+sym∇ψ

)
,

and Cε : L2(R2 × I)→ L2(R2) is given by Cε = (Uε)−1PεUε,
where Uε : L2(R2 × I)→ L2(ε−1[−π, π)2 ×Q

)
is the

Gelfand transform (only in x1, x2) and
Pε : L2(ε−1[−π, π)2 ×Q

)
→ L2(ε−1[−π, π)2) are given by

(Pεf )(θ) =

ˆ
Q

f (θ, ·, ·);



Final conclusions

I In the case of horizontal forces that are even in the
x3-variable the "limit" problem is
ˆ

R2
A0 sym∇u : sym∇ψ + ε2

ˆ
R2

u · ψ

=

ˆ
R2

(Cεf1)ψ1 +

ˆ
R2

(Cεf2)ψ2, ∀ψ ∈ H1(R2,R2),

whose solution is corrected by adding the expression

∂1u1ϕ1

(x1

ε
,
x2

ε
, x3

)
+

1
2

(∂1u2 + ∂2u1)ϕ2

(x1

ε
,
x2

ε
, x3

)
+∂2u2ϕ3

(x1

ε
,
x2

ε
, x3

)
+ U−1

ε Cε(θ),

where ϕi , i = 1,2,3, and Cε(θ) satisfy the above
equations;



Final conclusions

I In the case of horizontal forces that are odd in the
x3-variable, the "limit" problem is given by

1
12

ˆ
R2

A0∇2v : ∇2ψ +
ε2

12

ˆ
R2
∇v · ∇ψ +

ˆ
R2

vψ

= −
ˆ

R2

(
C̃εf1

)
∂1ψ −

ˆ
R2

(
C̃εf2

)
∂2ψ ∀ψ ∈ H2(R2),

where C̃ε = (Uε)−1P̃εUε, and the operators
P̃ε : L2(ε−1[−π, π)2 ×Q

)
→ L2(ε−1[−π, π)2) are given by

(P̃εf )(θ) =

ˆ
Q

x3f (θ, ·, ·);



Final conclusions
I The complete solution is the superposition of these three

casses since

f (·, x3) =
f (·, x3) + f (·,−x3)

2︸ ︷︷ ︸
even

+
f (·, x3)− f (·,−x3)

2︸ ︷︷ ︸
odd

;

I The limit equation are of the type of Ciarlet’s plate on
infinite domain with lower order term included and updated
term in the case of in-plane even force;

I The scaling that we imposed inluences the model
significantly. Notice that this scaling is not "suggested by
the equations" since the solution does not stay bounded in
L2(R2) as ε→ 0. However, it is the only reasonable scaling
on the finite domain. Other "more natural" scaling would
not cause that the limit model is Ciarlet’s plate;

I One can use the obtained equations to calculate the
approximate spectral density of the original operator (the
computations are done on transformed problem).



Thank you for your attention!


