Distributed optimal control of parabolic equations by spectral decomposition

Martin Lazar
University of Dubrovnik

Zagreb, 2017

Joint work with: C. Molinari, Universidad Técnica Federico Santa María, Valparaíso, Chile

The problem framework

The constrained minimisation problem

$$
(\mathcal{P}) \quad \min _{u}\left\{J(u): \quad y(T) \in \overline{B_{\varepsilon}\left(y^{T}\right)}\right\}
$$

where:

- J is a given cost functional
$-y^{T}$ is a given target
$-y$ the solution of

$$
(\mathcal{E}) \quad\left\{\begin{array}{l}
\frac{d}{d t} y(t)+\mathcal{A} y(t)=\mathcal{B}_{t} u(t) \quad \text { for } t \in(0, T) \tag{1}\\
y(0)=0
\end{array}\right.
$$

H1 The functional J is strictly convex, coercive and lower-semicontinuous.
H2 The unbounded linear operator $\mathcal{A}: \mathcal{H} \rightarrow \mathcal{H}$ is positive semidefinite, selfadjoint with dense domain $D(\mathcal{A})$ and compact resolvent.
H3 The operator \mathcal{B}_{t} belongs to $\mathcal{L}(\mathcal{U}, \mathcal{H})$ for each time $t \in(0, T)$; moreover the pair $\left(A, B_{t}\right)$ is approximately controllable in time T.
U, H - real Hilbert space

> 國 M. Lazar, C. Molinari and J. Peypouquet: Optimal control of parabolic equations by spectral decomposition, Optimization, 23 pp, (2017)

The main example

Heat equation:

$$
\begin{cases}\frac{d}{d t} y(t)-\Delta y(t)=\mathbb{1}_{\omega} u(t) & \text { in } \Omega \times(0, T) \tag{2}\\ y(t)=0 & \text { on } \partial \Omega \times(0, T) \\ y(0)=0 & \text { in } \Omega .\end{cases}
$$

Functional:

$$
J(u)=\frac{1}{2} \int_{0}^{T} \alpha(t)\|u(t)\|_{\mathcal{U}}^{2} d t+\frac{1}{2} \int_{0}^{T} \beta(t)\left\|y_{u}(t)-y^{d}(t)\right\|_{\mathcal{H}}^{2} d t
$$

The system (2) is not exactly controllable.
For any open subset ω of positive measure system (2) is approximately controllable in any time $T>0$.
The goal: among all the eligible controls to detect one minimising given cost functional.

Existence of the solution

Unconstrained problem:

$$
\begin{equation*}
\tilde{u}=\arg \min _{u \in L_{T, \mathcal{U}}^{2}} J(u) \tag{3}
\end{equation*}
$$

It admits the unique solution \tilde{u} (due to assumptions on J).

Theorem

The constrained problem (\mathcal{P}) admits a unique solution that we denote by \hat{u}.
If $\left\|\tilde{y}(T)-y^{T}\right\| \leq \varepsilon$, then the optimal control coincides with the solution of the unconstrained problem, i.e. $\hat{u}=\tilde{u}$.
Otherwise, the optimal final state verifies $\left\|\hat{y}(T)-y^{T}\right\|_{\mathcal{H}}=\varepsilon$ (i.e.: $\hat{y}(T)$ lies on $\partial B_{\varepsilon}\left(y^{T}\right)$).

In the sequel we suppose that $\varepsilon<\left\|\tilde{y}(T)-y^{T}\right\|$.

Characterisation of the solution by the dual problem

We introduce the Fenchel conjugate J^{\star} of the functional J :

$$
J^{\star}\left(u^{\star}\right)=\sup _{u \in L_{T, \mathcal{U}}^{2}}\left\{\left\langle u^{\star}, u\right\rangle_{T, \mathcal{U}}-J(u)\right\} \quad \text { for } u^{\star} \in L_{T, \mathcal{U}}^{2} .
$$

Theorem [Generalized HUM]

Let $\bar{y} \in \mathcal{H}$ be a reachable state.
Then

$$
\begin{equation*}
\bar{u} \in \arg \min _{u \in \mathcal{U}}\{J(u): \quad \mathcal{T} u=\bar{y}\} \tag{4}
\end{equation*}
$$

is of the form $\bar{u}=\nabla J^{\star}\left(-\mathcal{T}^{*} \bar{\varphi}^{T}\right)$, where

$$
\begin{equation*}
\bar{\varphi}^{T} \in \arg \min _{\varphi^{T} \in \mathcal{H}}\left\{J^{\star}\left(-\mathcal{T}^{*} \varphi^{T}\right)+\left\langle\bar{y}, \varphi^{T}\right\rangle_{\mathcal{H}}\right\} \tag{5}
\end{equation*}
$$

$\mathcal{T}: L_{T, \mathcal{U}}^{2} \rightarrow \mathcal{H}$ is the operator that takes the distributed control and gives the corresponding final state

$$
\begin{gathered}
\mathcal{T} u=y(T) \\
\mathcal{T}^{*} \varphi^{T}=\mathcal{B}^{*} \varphi
\end{gathered}
$$

where φ is the solution to the dual problem satisfying $\varphi(T)=\varphi^{T}$.

Characterisation of the solution by the dual problem

It is enough to restrict minimisation problem (\mathcal{P}) to controls of form $u=\nabla J^{\star}\left(-\mathcal{T}^{*} \varphi^{T}\right)$.
For such u

$$
J(u)=F\left(\varphi^{T}\right)
$$

where

$$
\begin{equation*}
F\left(\varphi^{T}\right)=-\left[\left\langle\nabla J^{\star}\left(-\mathcal{T}^{*} \varphi^{T}\right), \mathcal{T}^{*} \varphi^{T}\right\rangle_{L_{T, \mathcal{U}}^{2}}+J^{\star}\left(-\mathcal{T}^{*} \varphi^{T}\right)\right] \tag{6}
\end{equation*}
$$

Theorem

The solution of problem (\mathcal{P}) is

$$
\hat{u}=\nabla J^{\star}\left(-\mathcal{T}^{*} \hat{\varphi}^{T}\right)
$$

where $\hat{\varphi}^{T}$ is a solution of

$$
\begin{equation*}
\min _{\varphi^{T} \in \mathcal{H}}\left\{F\left(\varphi^{T}\right):\left\|y(T)-y^{T}\right\|_{\mathcal{H}}=\varepsilon\right. \tag{7}
\end{equation*}
$$

Quadratic cost-functional

$$
\begin{equation*}
J(u)=\frac{1}{2}\|C u-d\|_{\mathcal{X}}^{2}, \tag{8}
\end{equation*}
$$

C - a linear bounded operator from $L_{T, \mathcal{U}}^{2}$ to a generic Hilbert space \mathcal{X} We suppose that C is uniformly elliptic:

$$
\begin{equation*}
\|C u\|_{\mathcal{X}} \geq \gamma\|u\|_{L_{T, u}^{2}} . \tag{9}
\end{equation*}
$$

It implies that it exists $\left(C^{*} C\right)^{-1}$.

EXAMPLE

Set $C=\left(C_{1}, C_{2}\right)$ and $d=\left(d_{1}, d_{2}\right)$:

$$
\begin{align*}
& \left(C_{1} u\right)(t)=\sqrt{\alpha(t)} u(t) \mathbb{1}_{\omega} ; \tag{10}\\
& \left(C_{2} u\right)(t)=\sqrt{\beta(t)} y_{u}(t) \mathbb{1}_{\omega^{\prime}} ; \tag{11}\\
& d_{1}(t)=0 ; \tag{12}\\
& d_{2}(t)=\sqrt{\beta(t)} y^{d}(t) \mathbb{1}_{\omega^{\prime}} \tag{13}
\end{align*}
$$

Then

$$
J(u)=\frac{1}{2} \int_{0}^{T} \alpha(t)\|u(t)\|_{L^{2}(\omega)}^{2} d t+\frac{1}{2} \int_{0}^{T} \beta(t)\left\|y_{u}(t)-y^{d}(t)\right\|_{L^{2}\left(\omega^{\prime}\right)}^{2} d t .
$$

Optimal control constructive characterisation

We have shown that the solution is of the form

$$
\begin{equation*}
\hat{u}=\nabla J^{\star}\left(-\mathcal{T}^{*} \hat{\varphi}^{T}\right) \tag{14}
\end{equation*}
$$

where $\hat{\varphi}^{T}$ is the solution of minimisation problem (7).
For quadratic functional $J=\frac{1}{2}\|C u-d\|_{\mathcal{X}}^{2}$ the formula (14) becomes

$$
\begin{equation*}
\hat{u}=\underbrace{-G \mathcal{B}^{*} e^{(t-T) \mathcal{A}^{*}} \hat{\varphi}^{T}}_{u_{c}}+\underbrace{G C^{*} d}_{\tilde{u}}, \tag{15}
\end{equation*}
$$

where $G=\left(C^{*} C\right)^{-1}$, while $\hat{\varphi}^{T}$ is the minimiser of the problem (7).

We have to determine $\hat{\varphi}^{T}$.

Optimal control constructive characterisation

For $J=\frac{1}{2}\|C u-d\|_{\mathcal{X}}^{2}$ we have

$$
\begin{equation*}
\hat{\varphi}^{T}=\arg \min _{\varphi^{T} \in \mathcal{H}}\left\{F\left(\varphi^{T}\right)\right\}=\arg \min _{\varphi^{T} \in \mathcal{H}}\left\{\left\langle M_{T} \varphi^{T}, \varphi^{T}\right\rangle_{\mathcal{H}}\right\}, \tag{16}
\end{equation*}
$$

where $M_{t}: \mathcal{H} \rightarrow \mathcal{H}$ is given by:

$$
\begin{equation*}
M_{t}\left(\varphi^{T}\right)=\int_{0}^{t} e^{(s-t) \mathcal{A}} \mathcal{B}\left\{\left[\left(C^{*} C\right)^{-1}\left(\mathcal{B}^{*} e^{(\cdot-T) \mathcal{A}^{*}} \varphi^{T}\right)\right](s)\right\} d s \tag{17}
\end{equation*}
$$

In addition

$$
y(T)=-M_{T} \varphi^{T}+\tilde{y}(T) .
$$

Consequently, the original problem (\mathcal{P}) is equivalent to

$$
\begin{equation*}
\left(\mathcal{P}^{\prime}\right) \quad \min _{\varphi^{T} \in \mathcal{H}}\{\left\langle M_{T} \varphi^{T}, \varphi^{T}\right\rangle_{\mathcal{H}}:\|\underbrace{M_{T} \varphi^{T}-\tilde{y}(T)}_{-y(T)}+y^{T}\|_{\mathcal{H}}=\varepsilon\} . \tag{18}
\end{equation*}
$$

- a standard constrained optimisation problem.

Optimal control constructive characterisation

Introduce the Lagrange functional

$$
\mathcal{L}\left(\varphi^{T}, \mu\right)=\left\langle M_{T} \varphi^{T}, \varphi^{T}\right\rangle_{\mathcal{H}}+\mu\left(\left\|M_{T} \varphi^{T}-\tilde{y}(T)+y^{T}\right\|_{\mathcal{H}}^{2}-\varepsilon^{2}\right) .
$$

The optimality condition gives

$$
\begin{equation*}
\left(M_{T}+M_{T}^{*}\right) \hat{\varphi}^{T}+2 \hat{\mu} M_{T}^{*}\left(M_{T} \hat{\varphi}^{T}-\tilde{y}(T)+y^{T}\right)=0 \tag{19}
\end{equation*}
$$

implying (M_{T} is symmetric)

$$
\hat{\varphi}^{T}=[M_{T} \underbrace{}_{\left.R_{\hat{\mu} M_{T}}\left(I+\hat{\mu} M_{T}\right)\right]^{-1}}\left[\hat{\mu} M_{T}\left(\tilde{y}(T)-y^{T}\right)\right] .
$$

The explicit expression

$$
\hat{\varphi}^{T}=R_{\hat{\mu} M_{T}}\left[\hat{\mu}\left(\tilde{y}(T)-y^{T}\right)\right]
$$

of the minimisator in terms of the given data and the unknown scalar $\hat{\mu}$.
Putting it in the constraint

$$
\begin{equation*}
\left\|M_{T} \hat{\varphi}^{T}-\tilde{y}(T)+y^{T}\right\|_{\mathcal{H}}=\varepsilon . \tag{20}
\end{equation*}
$$

we get

$$
\begin{equation*}
\varepsilon=\left\|R_{\hat{\mu} M_{T}}\left(\tilde{y}(T)-y^{T}\right)\right\|_{\mathcal{H}} . \tag{21}
\end{equation*}
$$

Geometrical interpretation

Figure: Geometrical interpretation of the optimal final state.

Optimal control \hat{u} - expressed by optimal dual final-state $\hat{\varphi}^{T}$.
Optimal dual final-state $\hat{\varphi}^{T}$ - expressed by optimal Lagrange multiplier.

Optimal control constructive characterisation

Let $g: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$be given by

$$
\begin{equation*}
g(\mu)=\left\|R_{\mu M_{T}}\left(\tilde{y}(T)-y^{T}\right)\right\|_{\mathcal{H}}^{2} . \tag{22}
\end{equation*}
$$

The problem is reduced to a scalar (nonlinear) equation

$$
g(\hat{\mu})=\varepsilon^{2} .
$$

The equation is well defined for every $\varepsilon<\left\|\tilde{y}(T)-y^{T}\right\|$.

The constructive algorithm

- Find the real value $\hat{\mu}$ (optimal Lagrange multiplier) as the unique solution to

$$
g(\hat{\mu})=\varepsilon^{2}
$$

for g given by (22).

- Find the vector $\hat{\varphi}^{T} \in \mathcal{H}$ (optimal dual final-state), as

$$
\hat{\varphi}^{T}=R_{\hat{\mu} M_{T}}\left[\hat{\mu}\left(\tilde{y}(T)-y^{T}\right)\right]
$$

for $R_{\mu M_{T}}=\left(I+\mu M_{T}\right)^{-1}$ and M_{T} given by (17).

- Find the function $\hat{\varphi}(t)$ (optimal dual variable), given by

$$
\hat{\varphi}(t)=e^{(t-T) \mathcal{A}^{*}} \hat{\varphi}^{T}
$$

- The optimal control is given by

$$
\hat{u}=\underbrace{-G \mathcal{B}^{*} \hat{\varphi}}_{u_{c}}+\underbrace{G C^{*} d}_{\tilde{u}}
$$

where $G=\left(C^{*} C\right)^{-1}$.

Interpretation of u_{c}

The constrained component of the optimal control

$$
u_{c}=-\underbrace{\left(C^{*} C\right)^{-1}}_{\text {Delicate part }} \mathcal{B}^{*} \hat{\varphi} .
$$

We show

$$
u_{c}=-\frac{1}{\alpha} \mathcal{B}^{*} \varphi
$$

where φ is the solution to the system

$$
\left\{\begin{array}{l}
y^{\prime}+\mathcal{A} y=-\frac{1}{\alpha} \mathcal{B} \mathcal{B}^{*} \varphi \tag{23}\\
y(0)=0 \\
-\varphi^{\prime}+\mathcal{A} \varphi=\beta y \\
\varphi(T)=\hat{\varphi}^{T}=\hat{\mu}\left(\hat{y}(T)-y^{T}\right)
\end{array}\right.
$$

This is the optimality system of the penalisation problem

$$
\min _{u}\left\{\frac{1}{2} \int_{0}^{T} \alpha(t)\|u(t)\|_{\mathcal{H}}^{2} d t+\frac{1}{2} \int_{0}^{T} \beta(t)\left\|y_{u}(t)\right\|_{\mathcal{H}}^{2} d t+\frac{\hat{\mu}}{2}\left\|y_{u}(T)-y^{T}\right\|_{\mathcal{H}}^{2}\right\}
$$

Spectral decomposition

Denote:
$\left(\psi_{n}\right)_{n \in \mathbf{N}}$ - an orthonormal basis of H, consisting of eigenfunction of \mathcal{A}
$\left(\lambda_{n}\right)_{n \in \mathbf{N}}$ - a sequence of corresponding (nonnegative) eigenvalues λ_{n}, $\lim _{n} \lambda_{n}=+\infty$.
y_{n} - the n-th Fourier coefficient of $y \in H$.
The optimality system (23) can be rewritten as a $2^{\text {nd }}$ order ODE

$$
-\varphi^{\prime \prime}+\frac{\beta^{\prime}}{\beta} \varphi^{\prime}+\left(\mathcal{A}^{2}-\frac{\beta^{\prime}}{\beta} \mathcal{A}+\frac{\beta}{\alpha} \mathcal{B}_{t} \mathcal{B}_{t}^{*}\right) \varphi=0
$$

If $\mathcal{B}_{t} \mathcal{B}_{t}^{*}$ is diagonalisable in the same basis of eigenfunctions of \mathcal{A} the system can be solved component-wise.
Similarly, the operator M_{T}

$$
M_{T}\left(\varphi^{T}\right)=\int_{0}^{T} e^{(s-T) \mathcal{A}} \mathcal{B}_{s}\left\{\left[\left(C^{*} C\right)^{-1}\left(\mathcal{B}^{*} e^{(\cdot-T) \mathcal{A}^{*}} \varphi^{T}\right)\right](s)\right\} d s
$$

can be presented by an infinite matrix with entries

$$
\begin{equation*}
\left(M_{t}\right)_{j k}=\int_{0}^{T}\left\langle\left(C^{*} C\right)^{-1}\left[\mathcal{B}^{*} e^{\lambda_{j}(\cdot-T)} \psi_{j}\right](s), \mathcal{B}^{*} e^{\lambda_{k}(s-T)} \psi_{k}\right\rangle_{\mathcal{H}} d s \tag{24}
\end{equation*}
$$

Truncation - required for practical implementation of the algo

Control cost- example

$$
\min _{u \in L^{2}((0, L) \times(0, T))}\left\{\int_{0}^{T} \alpha(t)\|u(t)\|_{L^{2}(0, L)}^{2}: \quad\left\|y(T)-y^{T}\right\|_{L^{2}(0, \pi)} \leq \varepsilon\right\}
$$

where:

- $\alpha=e^{5 t}, L=\pi, T=1$ and

$$
\begin{cases}\partial_{t} y(x, t)-\partial_{x x} y(x, t)=u(x, t) \cdot \mathcal{I}_{\omega_{c}}(x) & x \in(0, L), t \in[0, T] \\ y(0, t)=y(L, t)=0 & t \in[0, T] \\ y(x, 0)=0 & x \in[0, L]\end{cases}
$$

with $\omega_{c}=\left(\frac{L}{8}, \frac{L}{4}\right) \cup\left(\frac{L}{2}, \frac{3 L}{4}\right)$;

Exmple - Control cost

- final target (blue):

$$
y^{T}(x)=\frac{L}{2}-\left\|x-\frac{L}{2}\right\| ;
$$

We used $\psi_{n}(x)=\sqrt{\frac{2}{L}} \cdot \sin \left(\frac{n x \pi}{L}\right), \lambda_{n}=n^{2}$ and $N=230$.

$\varepsilon^{2}=[1,0.05]$

Example - Trajectory regulation

$$
\min _{u}\left\{\alpha \int_{0}^{T}|u(t)|^{2} d t+\beta \int_{0}^{T}\left|y(t)-y^{d}\right|^{2} d t: \quad\left\|y(T)-y^{T}\right\|_{L^{2}(0, \pi)} \leq \varepsilon\right\}
$$

where:

- equation: the same as before, but with $\omega_{c}=\Omega$;
- final target $(T=1)$:

$$
y^{T}(x)=3 \exp \left(-15\left(x-\frac{3 \pi}{4}\right)^{2}\right)
$$

- trajectory target: for $t_{1}=\frac{2}{3} T$,

$$
y^{d}(x, t)=5 \exp \left(-15\left(x-\frac{\pi}{4}\right)^{2}\right) \mathcal{I}_{\left[0, t_{1}\right]}(t)
$$

- $\beta=1$;

We used $N=25$.

Figure: Red: y^{T}. Blue: y^{d}.
y^{d} is targeted just during $t \in\left[0, \frac{2}{3}\right]$.

Figure: For $\alpha=0.01$ and $\varepsilon^{2}=0.05$, the optimal control (Left) and the optimal state (Right). Red line: y^{T}. Blue line: y^{d}.

Figure: For $\alpha=0.001$ and $\varepsilon^{2}=0.05$, the optimal control (Left) and the optimal state (Right). Red line: y^{T}. Blue line: y^{d}.

Conclusion

The new approach:

- exploring spectral representation of the solution by eigenfunctions of \mathcal{A},
- an explicit expression of the optimal constrained control in terms of the given problem data.
- the numerical issues are reduced to finding the unique root of a scalar function.
- same formula applies independently of the dimension. No curse of dimensionality.

Price to pay:

- knowledge of eigenfunctions, If the problem has to be considered many times for different data, but the same operator, this can be done offline.

Thanks for your attention!

