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The problem framework
The constrained minimisation problem

P min{Jw: y(I)eB:G},

where:

— J is a given cost functional
—yT is a given target

— y the solution of

@ {;ty(t) + Ay(t) = Biu(t)  fort € (0,T)

y(0) = 0. @

H1 The functional J is strictly convex, coercive and lower-semicontinuous.

H2 The unbounded linear operator A : H — H is positive semidefinite,
selfadjoint with dense domain D(A) and compact resolvent.

H3 The operator B; belongs to £ (U, H) for each time ¢t € (0,T); moreover
the pair (A, By) is approximately controllable in time 7.

U, H - real Hilbert space
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The main example

Heat equation:

%y(t) — Ay(t) = Lyu(t) in Qx (0,7)

y(t) = on 99 x (0,T) ()
y(0) = in Q.
Functional:
T = [ a) @l @+ 5 [ B0 )~y O a

The system (2) is not exactly controllable.

For any open subset w of positive measure system (2) is approximately
controllable in any time 7" > 0.

The goal: among all the eligible controls to detect one minimising given cost
functional.



Existence of the solution

Unconstrained problem:
4 =arg min J(u). (3)
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It admits the unique solution @ (due to assumptions on J).

Theorem

The constrained problem (P) admits a unique solution that we denote by 1.

If |§(T) — y*|| < e, then the optimal control coincides with the solution of the
unconstrained problem, i.e. 4 = 4.

Otherwise, the optimal final state verifies ||§ (T') — y” ||x = ¢ (i.e.: §(T) lies
on 9B: (y")).

In the sequel we suppose that ¢ < ||H(T) — y™|.



Characterisation of the solution by the dual problem
We introduce the Fenchel conjugate J* of the functional J:

J (W)= sup { (wu)ru—J(u)} foru* € Liy.
ueL%yu

Theorem [Generalized HUM]

Let y € H be a reachable state.
Then

ﬂEargmeizr}{J(u): Tu=79}. (4)
is of the form @ = VJ* (—=T*@"), where

" carg min { J(=T"¢") + (7,9 ) }. (5)
et eEH

T: L%’,u — H is the operator that takes the distributed control and gives the
corresponding final state

T*SDT — B*(,D,
where ¢ is the solution to the dual problem satisfying ¢(T) = ¢ .



Characterisation of the solution by the dual problem

It is enough to restrict minimisation problem (P) to controls of form
u=VJ"(=T"p").
For such u
J(u) = F(o"),
where

F") == [V (-T°6"), T ), + 7 (-T°6")] . (6)

Theorem

The solution of problem (P) is
a=vJ (-T°97),

where ¢T is a solution of

min { FT) (@) =97l =e. }. (7)




Quadratic cost-functional

1
J(w) = 3ICu - dl, (8)
C' — a linear bounded operator from LQTYM to a generic Hilbert space X
We suppose that C' is uniformly elliptic:

ICulle > Al gz, .- (9)

It implies that it exists (C*C)™".

Set C = (01,02) and d = (dl,dQ)Z
(Cru) (1) = Va0 u(t) Lo; (10)
(C20) (8) = VBT vu(t) Lo (1)
di(t) = 0; (12)
d2(t) = V/B(t) y*(¢) Lur (13)
Then
T =3 [ o) JuOlia dt + 5 [ 80 ln(® ~ v 2 dt.




Optimal control constructive characterisation

We have shown that the solution is of the form
a=vr (-T°¢"), (14)

where ¢7 is the solution of minimisation problem (7).
For quadratic functional J = ||Cu — d||% the formula (14) becomes

a=-GB e " DA T L Gerd, (15)
—/—/ v

where G = (C*C) ™", while $7 is the minimiser of the problem (7).

We have to determine ¢7.



Optimal control constructive characterisation

For J = 1||Cu — d||3 we have

¢ = arg mln { F(p™)} = arg mm { (Mr ng,cpT)H}, (16)
pTeH eTeH

where M, : H — H is given by:

w (7)< [ s {[cror (Bl ) e

In addition
y(T) = —Mrp" +§(T).

Consequently, the original problem (P) is equivalent to

(P) min § (Mr ¢", 0 )u: | Mr " —§(T)+y"llu=¢ . (18)
et eH N——
—y(T)

— a standard constrained optimisation problem.



Optimal control constructive characterisation
Introduce the Lagrange functional

£ (o7 1) = (Mr "9+ (1M1 6" = §(T) +y7 I3 - ).
The optimality condition gives
(Mr + M7) " +2aMz (Mr §7 = §(T) +y") =0, (19)
implying (M7 is symmetric)
o7 = [Mr (14 nin) | [ (30m) — 7))

|
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The explicit expression
¢ = Ryr [ (9(1) — ")

of the minimisator in terms of the given data and the unknown scalar /.

Putting it in the constraint

1Mz @7 = G(T) +y" |l = (20)
we get

e = || Ranrr (5(T) = 4" [l (21)



Geometrical interpretation

y(T)

Figure: Geometrical interpretation of the optimal final state.

Optimal control 4 - expressed by optimal dual final-state $7.

Optimal dual final-state ¢7 — expressed by optimal Lagrange multiplier.



Optimal control constructive characterisation
Let g : R — R™ be given by
9 (1) = Rz (5T) = ") I (22)
The problem is reduced to a scalar (nonlinear) equation
g(p) =<
The equation is well defined for every e < ||§(T) — 7.
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The constructive algorithm

e Find the real value ji (optimal Lagrange multiplier) as the unique solution
to

g(i) = &%
for g given by (22).
e Find the vector »* € H (optimal dual final-state), as

¢" = Rany [ﬂ (ﬂ(T) - yT)] ;
for Rune, = (I + pMr)~" and Mz given by (17).
e Find the function ¢ (¢) (optimal dual variable), given by
B(t) =TT
e The optimal control is given by
0@=-GB ¢+ GC"d,
~——

——

Ue @

where G = (C*C)~".




Interpretation of w,

The constrained component of the optimal control

ue=— (C*C)" B*p.
———
Delicate part

We show 1
U = ——B
«

where ¢ is the solution to the system

Y +Ay=—1BB"y
y(0) =0 (23)
—¢' + Ap =By

o(T) = ¢" = p(H(T) —y").

This is the optimality system of the penalisation problem

min {5 [ @)t + 5 [ 8OOt + o) =713 }



Spectral decomposition

Denote:

(¥n),,en — an orthonormal basis of H, consisting of eigenfunction of A

(An)nen — a sequence of corresponding (nonnegative) eigenvalues A,
lim,, \,, = +o00.

yn — the n-th Fourier coefficient of y € H.

The optimality system (23) can be rewritten as a 2°¢ order ODE

/ /
1 ﬁ / 2 6 6
—¢"+ e (A - A+ —
5¥ +( At .
If B:B; is diagonalisable in the same basis of eigenfunctions of A the system
can be solved component-wise.
Similarly, the operator M

My ((pT) _ /OT = DAR. { [(0*0)71 (B*e(_T)A*QDT)] (s)} ds,

can be presented by an infinite matrix with entries

(Mt)],k _ /OT<(C*C)71 [B*e)\j(<7T)wji| (), B*em(sz)wk>H ds. (24)

Truncation - required for practical implementation of the algo



Control cost- example

T
TS § ARG R e B e
where:
»a=¢e* L=x,T=1and
Oy(z,t) — Ozay(z,t) = u(z,t) - Lo, ()
y(07t) = y(Lvt) =0
y(z,0) =0

x € (0,L), tel0,T]
t€[0,T)
z €[0,L],

with we = (5, 3) U (3, %);

w



Exmple - Control cost
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> final target (blue):
L

L
T - 1l-
g @) =5~z =5

We used ty () = /2 - sin("%), A, = n® and N = 230,
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Example - Trajectory regulation

T T 2
mm{“/ uoft a5 [ fuo = o uy<T>—yTHLz(omSE}’
0 0

u

where:
> equation: the same as before, but with w. = ;

> final target (T = 1):

y7(z) = 3exp <_15 (x _ ‘Zr>2> ;

> trajectory target: for t; = 27,

d T2
y!(z,1) = Bexp (—15 (== 1) ) Tioo) (0):

We used N = 25.
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Figure: Red: yT'. Blue: y?.

y? is targeted just during ¢ € [0, 2].



Figure: For a = 0.01 and 2 = 0.05, the optimal control (Left) and the optimal state
(Right). Red line: y”. Blue line: y?.
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Figure: For @ = 0.001 and €2 = 0.05, the optimal control (Left) and the optimal state

(Right). Red line: y”. Blue line: y?.



Conclusion

The new approach:

— exploring spectral representation of the solution by eigenfunctions of A,

— an explicit expression of the optimal constrained control in terms of the
given problem data.

— the numerical issues are reduced to finding the unique root of a scalar
function.

— same formula applies independently of the dimension.
No curse of dimensionality.
Price to pay:

— knowledge of eigenfunctions,
If the problem has to be considered many times for different data, but the
same operator, this can be done offline.

Thanks for your attention!
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