Distributed optimal control of parabolic equations by spectral decomposition

Martin Lazar University of Dubrovnik

Zagreb, 2017

Joint work with: C. Molinari, Universidad Técnica Federico Santa María, Valparaíso, Chile

The problem framework

The constrained minimisation problem

$$(\mathcal{P}) \qquad \min_{u} \left\{ J(u): \ y(T) \in \overline{B_{\varepsilon}\left(y^{T}\right)} \right\},$$

where:

- ${\boldsymbol{J}}$ is a given cost functional
- $-y^T$ is a given target
- \boldsymbol{y} the solution of

$$(\mathcal{E}) \qquad \begin{cases} \frac{d}{dt}y(t) + \mathcal{A}y(t) = \mathcal{B}_t u(t) & \text{ for } t \in (0,T) \\ y(0) = 0. \end{cases}$$
(1)

- **H1** The functional J is strictly convex, coercive and lower-semicontinuous.
- H2 The unbounded linear operator $\mathcal{A} : \mathcal{H} \to \mathcal{H}$ is positive semidefinite, selfadjoint with dense domain $D(\mathcal{A})$ and compact resolvent.
- **H3** The operator \mathcal{B}_t belongs to $\mathcal{L}(\mathcal{U}, \mathcal{H})$ for each time $t \in (0, T)$; moreover the pair (A, B_t) is approximately controllable in time T.
- $\boldsymbol{U},\boldsymbol{H}$ real Hilbert space

M. Lazar, C. Molinari and J. Peypouquet: *Optimal control of parabolic equations by spectral decomposition*, Optimization, 23 pp, (2017)

The main example

Heat equation:

$$\begin{cases} \frac{d}{dt}y(t) - \Delta y(t) = \mathbb{1}_{\omega}u(t) & \text{ in } \Omega \times (0,T) \\ y(t) = 0 & \text{ on } \partial\Omega \times (0,T) \\ y(0) = 0 & \text{ in } \Omega. \end{cases}$$
(2)

Functional:

$$J(u) = \frac{1}{2} \int_0^T \alpha(t) \|u(t)\|_{\mathcal{U}}^2 dt + \frac{1}{2} \int_0^T \beta(t) \|y_u(t) - y^d(t)\|_{\mathcal{H}}^2 dt.$$

The system (2) is not exactly controllable.

For any open subset ω of positive measure system (2) is approximately controllable in any time T > 0.

The goal: among all the eligible controls to detect one minimising given cost functional.

Existence of the solution

Unconstrained problem:

$$\tilde{u} = \arg\min_{u \in L^2_{T,\mathcal{U}}} J(u).$$
(3)

It admits the unique solution \tilde{u} (due to assumptions on J).

Theorem

The constrained problem (\mathcal{P}) admits a unique solution that we denote by \hat{u} .

If $\|\tilde{y}(T) - y^T\| \le \varepsilon$, then the optimal control coincides with the solution of the unconstrained problem, i.e. $\hat{u} = \tilde{u}$.

Otherwise, the optimal final state verifies $\|\hat{y}(T) - y^T\|_{\mathcal{H}} = \varepsilon$ (i.e.: $\hat{y}(T)$ lies on $\partial B_{\varepsilon}(y^T)$).

In the sequel we suppose that $\varepsilon < \|\tilde{y}(T) - y^T\|$.

Characterisation of the solution by the dual problem

We introduce the Fenchel conjugate J^* of the functional J:

$$J^{\star}\left(u^{\star}\right) = \sup_{u \in L^{2}_{T,\mathcal{U}}} \left\{ \left\langle u^{\star}, u \right\rangle_{T,\mathcal{U}} - J(u) \right\} \quad \text{for } u^{\star} \in L^{2}_{T,\mathcal{U}}.$$

Theorem [Generalized HUM]

Let $\bar{y} \in \mathcal{H}$ be a reachable state. Then

$$\bar{u} \in \arg\min_{u \in \mathcal{U}} \{ J(u) : \mathcal{T}u = \bar{y} \}.$$
(4)

is of the form $ar{u} =
abla J^{\star} \left(-\mathcal{T}^{*} ar{arphi}^{T}
ight)$, where

$$\bar{\varphi}^T \in \arg\min_{\varphi^T \in \mathcal{H}} \left\{ J^*(-\mathcal{T}^*\varphi^T) + \langle \bar{y}, \varphi^T \rangle_{\mathcal{H}} \right\}.$$
(5)

 $\mathcal{T}:L^2_{T,\mathcal{U}}\to\mathcal{H}$ is the operator that takes the distributed control and gives the corresponding final state

$$\mathcal{T}u = y(T).$$

$$\mathcal{T}^*\varphi^T = \mathcal{B}^*\varphi,$$

where φ is the solution to the dual problem satisfying $\varphi(T) = \varphi^T$.

Characterisation of the solution by the dual problem

It is enough to restrict minimisation problem (\mathcal{P}) to controls of form $u = \nabla J^* \left(-\mathcal{T}^* \varphi^T \right)$. For such u

$$J(u) = F(\varphi^T),$$

where

$$F(\varphi^{T}) = -\left[\langle \nabla J^{\star} \left(-\mathcal{T}^{*} \varphi^{T} \right), \ \mathcal{T}^{*} \varphi^{T} \rangle_{L^{2}_{T,\mathcal{U}}} + J^{\star} \left(-\mathcal{T}^{*} \varphi^{T} \right) \right].$$
(6)

Theorem

The solution of problem $\left(\mathcal{P}\right)$ is

$$\hat{u} = \nabla J^{\star} \left(-\mathcal{T}^{*} \hat{\varphi}^{T} \right),$$

where $\hat{\varphi}^T$ is a solution of

$$\min_{\varphi^T \in \mathcal{H}} \left\{ F(\varphi^T) : \| y(T) - y^T \|_{\mathcal{H}} = \varepsilon. \right\}.$$
(7)

Quadratic cost-functional

$$J(u) = \frac{1}{2} \|Cu - d\|_{\mathcal{X}}^2,$$
(8)

C – a linear bounded operator from $L^2_{T,\mathcal{U}}$ to a generic Hilbert space $\mathcal X$ We suppose that C is uniformly elliptic:

$$\|Cu\|_{\mathcal{X}} \ge \gamma \|u\|_{L^2_{T,\mathcal{U}}}.$$
(9)

It implies that it exists $(C^*C)^{-1}$.

EXAMPLE

Set $C = (C_1, C_2)$ and $d = (d_1, d_2)$:

$$(C_1 u)(t) = \sqrt{\alpha(t)} u(t) \mathbb{1}_{\omega};$$
(10)

$$(C_2 u)(t) = \sqrt{\beta(t)} y_u(t) \mathbb{1}_{\omega'}; \tag{11}$$

$$d_1(t) = 0;$$
 (12)

$$d_2(t) = \sqrt{\beta(t)} y^d(t) \mathbb{1}_{\omega'}$$
(13)

Then

$$J(u) = \frac{1}{2} \int_0^T \alpha(t) \|u(t)\|_{L^2(\omega)}^2 dt + \frac{1}{2} \int_0^T \beta(t) \|y_u(t) - y^d(t)\|_{L^2(\omega')}^2 dt.$$

We have shown that the solution is of the form

$$\hat{u} = \nabla J^{\star} \left(-\mathcal{T}^* \hat{\varphi}^T \right), \tag{14}$$

where $\hat{\varphi}^T$ is the solution of minimisation problem (7). For quadratic functional $J = \frac{1}{2} ||Cu - d||_{\mathcal{X}}^2$ the formula (14) becomes

$$\hat{u} = \underbrace{-G\mathcal{B}^* e^{(t-T)\mathcal{A}^*} \hat{\varphi}^T}_{u_c} + \underbrace{GC^* d}_{\tilde{u}}, \tag{15}$$

where $G = (C^*C)^{-1}$, while $\hat{\varphi}^T$ is the minimiser of the problem (7).

We have to determine $\hat{\varphi}^T$.

For
$$J = \frac{1}{2} \|Cu - d\|_{\mathcal{X}}^2$$
 we have
 $\hat{\varphi}^T = \arg\min_{\varphi^T \in \mathcal{H}} \left\{ F(\varphi^T) \right\} = \arg\min_{\varphi^T \in \mathcal{H}} \left\{ \langle M_T \ \varphi^T, \varphi^T \rangle_{\mathcal{H}} \right\},$ (16)

where $M_t: \mathcal{H} \to \mathcal{H}$ is given by:

$$M_t\left(\varphi^T\right) = \int_0^t e^{(s-t)\mathcal{A}} \mathcal{B}\left\{\left[\left(C^*C\right)^{-1}\left(\mathcal{B}^* e^{(\cdot-T)\mathcal{A}^*}\varphi^T\right)\right](s)\right\} ds.$$
(17)

In addition

$$y(T) = -M_T \varphi^T + \tilde{y}(T).$$

Consequently, the original problem (\mathcal{P}) is equivalent to

$$(\mathcal{P}') \qquad \min_{\varphi^T \in \mathcal{H}} \left\{ \langle M_T \ \varphi^T, \varphi^T \rangle_{\mathcal{H}} : \| \underbrace{M_T \ \varphi^T - \tilde{y}(T)}_{-y(T)} + y^T \|_{\mathcal{H}} = \varepsilon \right\}.$$
(18)

- a standard constrained optimisation problem.

Introduce the Lagrange functional

$$\mathcal{L}\left(\varphi^{T},\mu\right) = \langle M_{T} \ \varphi^{T},\varphi^{T}\rangle_{\mathcal{H}} + \mu\left(\|M_{T} \ \varphi^{T} - \tilde{y}(T) + y^{T}\|_{\mathcal{H}}^{2} - \varepsilon^{2}\right).$$

The optimality condition gives

$$(M_T + M_T^*)\,\hat{\varphi}^T + 2\hat{\mu}M_T^*\left(M_T\,\,\hat{\varphi}^T - \tilde{y}(T) + y^T\right) = 0,\tag{19}$$

implying $(M_T \text{ is symmetric})$

$$\hat{\varphi}^{T} = \left[M_{T} \underbrace{\left(I + \hat{\mu} M_{T} \right)}_{R_{\hat{\mu}M_{T}}} \right]^{-1} \left[\hat{\mu} M_{T} \left(\tilde{y}(T) - y^{T} \right) \right].$$

The explicit expression

$$\hat{\varphi}^{T} = R_{\hat{\mu}M_{T}} \left[\hat{\mu} \left(\tilde{y}(T) - y^{T} \right) \right]$$

of the minimisator in terms of the given data and the unknown scalar $\hat{\mu}$.

Putting it in the constraint

$$\|M_T \ \hat{\varphi}^T - \tilde{y}(T) + y^T\|_{\mathcal{H}} = \varepsilon.$$
⁽²⁰⁾

we get

$$\varepsilon = \|R_{\hat{\mu}M_T}\left(\tilde{y}(T) - y^T\right)\|_{\mathcal{H}}.$$
(21)

Geometrical interpretation

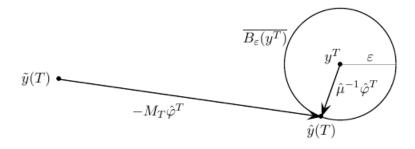


Figure: Geometrical interpretation of the optimal final state.

Optimal control \hat{u} - expressed by optimal dual final-state $\hat{\varphi}^T$.

Optimal dual final-state $\hat{\varphi}^T$ – expressed by optimal Lagrange multiplier.

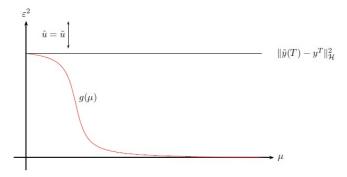
Let $g: \mathbf{R}^+ \to \mathbf{R}^+$ be given by

$$g(\mu) = \|R_{\mu M_T} \left(\tilde{y}(T) - y^T \right)\|_{\mathcal{H}}^2.$$
 (22)

The problem is reduced to a scalar (nonlinear) equation

$$g\left(\hat{\mu}\right) = \varepsilon^2.$$

The equation is well defined for every $\varepsilon < \|\tilde{y}(T) - y^T\|$.



The constructive algorithm

• Find the real value $\hat{\mu}$ (optimal Lagrange multiplier) as the unique solution to

$$g(\hat{\mu}) = \varepsilon^2;$$

for g given by (22).

• Find the vector $\hat{arphi}^T \in \mathcal{H}$ (optimal dual final-state), as

$$\hat{\varphi}^T = R_{\hat{\mu}M_T} \left[\hat{\mu} \left(\tilde{y}(T) - y^T \right) \right],$$

for $R_{\mu M_T} = (I + \mu M_T)^{-1}$ and M_T given by (17).

• Find the function $\hat{\varphi}(t)$ (optimal dual variable), given by

$$\hat{\varphi}(t) = e^{(t-T)\mathcal{A}^*} \hat{\varphi}^T.$$

• The optimal control is given by

$$\hat{u} = \underbrace{-G\mathcal{B}^*\hat{\varphi}}_{u_c} + \underbrace{GC^*d}_{\tilde{u}},$$

where $G = (C^*C)^{-1}$.

Interpretation of u_c

The constrained component of the optimal control

$$u_c = -\underbrace{\left(C^*C\right)^{-1}}_{\text{Deligate part}} \mathcal{B}^*\hat{\varphi} \,.$$

Delicate part

We show

$$u_c = -\frac{1}{\alpha} \mathcal{B}^* \varphi$$

where φ is the solution to the system

$$\begin{cases} y' + Ay = -\frac{1}{\alpha} \mathcal{B} \mathcal{B}^* \varphi \\ y(0) = 0 \\ -\varphi' + A\varphi = \beta y \\ \varphi(T) = \hat{\varphi}^T = \hat{\mu}(\hat{y}(T) - y^T). \end{cases}$$
(23)

This is the optimality system of the penalisation problem

$$\min_{u} \left\{ \frac{1}{2} \int_{0}^{T} \alpha(t) \|u(t)\|_{\mathcal{H}}^{2} dt + \frac{1}{2} \int_{0}^{T} \beta(t) \|y_{u}(t)\|_{\mathcal{H}}^{2} dt + \frac{\hat{\mu}}{2} \|y_{u}(T) - y^{T}\|_{\mathcal{H}}^{2} \right\}.$$

Spectral decomposition

Denote:

 $\begin{array}{l} (\psi_n)_{n\in \mathbf{N}} \ - \ \text{an orthonormal basis of } H, \ \text{consisting of eigenfunction of } \mathcal{A}\\ (\lambda_n)_{n\in \mathbf{N}} \ - \ \text{a sequence of corresponding (nonnegative) eigenvalues } \lambda_n, \\ \lim_n \lambda_n = +\infty. \\ y_n \ - \ \text{the } n\text{-th Fourier coefficient of } y \in H. \end{array}$

The optimality system (23) can be rewritten as a $2^{\rm nd}$ order ODE

$$-\varphi'' + \frac{\beta'}{\beta}\varphi' + (\mathcal{A}^2 - \frac{\beta'}{\beta}\mathcal{A} + \frac{\beta}{\alpha}\mathcal{B}_t\mathcal{B}_t^*)\varphi = 0.$$

If $\mathcal{B}_t \mathcal{B}_t^*$ is diagonalisable in the same basis of eigenfunctions of \mathcal{A} the system can be solved component-wise.

Similarly, the operator M_T

$$M_T\left(\varphi^T\right) = \int_0^T e^{(s-T)\mathcal{A}} \mathcal{B}_s\left\{\left[\left(C^*C\right)^{-1}\left(\mathcal{B}^*e^{(\cdot-T)\mathcal{A}^*}\varphi^T\right)\right](s)\right\} ds,$$

can be presented by an infinite matrix with entries

$$(M_t)_{jk} = \int_0^T \left\langle \left(C^* C \right)^{-1} \left[\mathcal{B}^* e^{\lambda_j (\cdot - T)} \psi_j \right] (s), \ \mathcal{B}^* e^{\lambda_k (s - T)} \psi_k \right\rangle_{\mathcal{H}} ds.$$
(24)

Truncation - required for practical implementation of the algo

Control cost- example

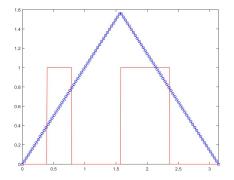
$$\min_{u \in L^2((0,L) \times (0,T))} \left\{ \int_0^T \alpha(t) \|u(t)\|_{L^2(0,L)}^2 : \quad \|y(T) - y^T\|_{L^2(0,\pi)} \le \varepsilon \right\}$$

where:

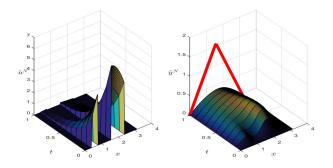
$$\begin{split} \bullet \ \alpha &= e^{5t}, \ L = \pi, \ T = 1 \ \text{and} \\ \begin{cases} \partial_t y(x,t) - \partial_{xx} y(x,t) = u(x,t) \cdot \mathcal{I}_{\omega_c}(x) & x \in (0,L) \,, \ t \in [0,T] \\ y(0,t) = y(L,t) = 0 & t \in [0,T] \\ y(x,0) = 0 & x \in [0,L] \,, \end{split}$$

with $\omega_c = \left(\frac{L}{8}, \frac{L}{4}\right) \cup \left(\frac{L}{2}, \frac{3L}{4}\right)$;

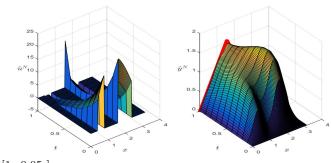
Exmple - Control cost



▶ final target (blue): $y^T(x) = \frac{L}{2} - \|x - \frac{L}{2}\|;$ We used $\psi_n(x) = \sqrt{\frac{2}{L}} \cdot \sin(\frac{nx\pi}{L})$, $\lambda_n = n^2$ and N = 230.



 $e^{\alpha}=0.5e_{0}^{\alpha}$



 $\varepsilon^2 = [1,\ 0.05\]$

Example - Trajectory regulation

$$\min_{u} \left\{ \alpha \int_{0}^{T} |u(t)|^{2} dt + \beta \int_{0}^{T} |y(t) - y^{d}|^{2} dt : \|y(T) - y^{T}\|_{L^{2}(0,\pi)} \leq \varepsilon \right\},$$

where:

- equation: the same as before, but with $\omega_c = \Omega$;
- final target (T = 1):

$$y^{T}(x) = 3 \exp\left(-15\left(x - \frac{3\pi}{4}\right)^{2}\right);$$

• trajectory target: for $t_1 = \frac{2}{3}T$,

$$y^{d}(x,t) = 5 \exp\left(-15\left(x - \frac{\pi}{4}\right)^{2}\right) \mathcal{I}_{[0,t_{1}]}(t);$$

 $\blacktriangleright \beta = 1;$

We used N = 25.

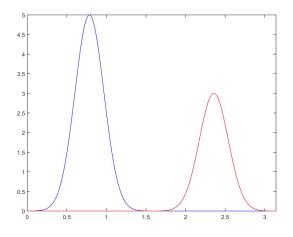


Figure: Red: y^T . Blue: y^d .

 y^d is targeted just during $t \in [0, \frac{2}{3}]$.

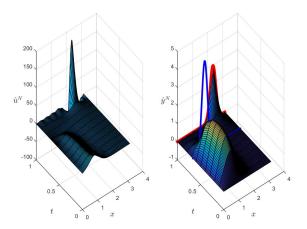


Figure: For $\alpha = 0.01$ and $\varepsilon^2 = 0.05$, the optimal control (Left) and the optimal state (Right). Red line: y^T . Blue line: y^d .

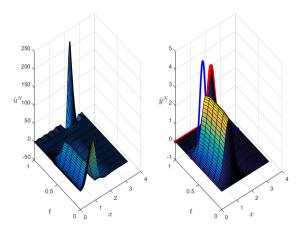


Figure: For $\alpha = 0.001$ and $\varepsilon^2 = 0.05$, the optimal control (Left) and the optimal state (Right). Red line: y^T . Blue line: y^d .

Conclusion

The **new** approach:

- exploring spectral representation of the solution by eigenfunctions of \mathcal{A} ,
- an explicit expression of the optimal constrained control in terms of the given problem data.
- the numerical issues are reduced to finding the unique root of a scalar function.
- same formula applies independently of the dimension. No curse of dimensionality.

Price to pay:

- knowledge of eigenfunctions,

If the problem has to be considered many times for different data, but the same operator, this can be done offline.

Thanks for your attention!