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The problem framework
The constrained minimisation problem

(P) min
u

{
J(u) : y(T ) ∈ Bε (yT )

}
,

where:
– J is a given cost functional
– yT is a given target
– y the solution of

(E)

{
d
dt
y(t) +Ay(t) = Btu(t) for t ∈ (0, T )

y(0) = 0.
(1)

H1 The functional J is strictly convex, coercive and lower-semicontinuous.

H2 The unbounded linear operator A : H → H is positive semidefinite,
selfadjoint with dense domain D(A) and compact resolvent.

H3 The operator Bt belongs to L (U ,H) for each time t ∈ (0, T ); moreover
the pair (A,Bt) is approximately controllable in time T .

U,H - real Hilbert space
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The main example

Heat equation: 
d
dt
y(t)−∆y(t) = 1ωu(t) in Ω× (0, T )

y(t) = 0 on ∂Ω× (0, T )

y(0) = 0 in Ω.

(2)

Functional:

J(u) =
1

2

∫ T

0

α(t) ‖u(t)‖2U dt +
1

2

∫ T

0

β(t) ‖yu(t)− yd(t)‖2H dt.

The system (2) is not exactly controllable.
For any open subset ω of positive measure system (2) is approximately
controllable in any time T > 0.
The goal: among all the eligible controls to detect one minimising given cost
functional.



Existence of the solution

Unconstrained problem:
ũ = arg min

u∈L2
T,U

J(u). (3)

It admits the unique solution ũ (due to assumptions on J).

Theorem

The constrained problem (P) admits a unique solution that we denote by û.

If ‖ỹ(T )− yT ‖ ≤ ε, then the optimal control coincides with the solution of the
unconstrained problem, i.e. û = ũ.

Otherwise, the optimal final state verifies ‖ŷ (T )− yT ‖H = ε (i.e.: ŷ (T ) lies
on ∂Bε

(
yT
)
).

In the sequel we suppose that ε < ‖ỹ(T )− yT ‖.



Characterisation of the solution by the dual problem
We introduce the Fenchel conjugate J? of the functional J :

J? (u?) = sup
u∈L2

T,U

{ 〈u?, u〉T,U − J(u) } for u? ∈ L2
T,U .

Theorem [Generalized HUM]

Let ȳ ∈ H be a reachable state.
Then

ū ∈ arg min
u∈U
{ J(u) : T u = ȳ } . (4)

is of the form ū = ∇J?
(
−T ∗ϕ̄T

)
, where

ϕ̄T ∈ arg min
ϕT∈H

{
J?(−T ∗ϕT ) + 〈ȳ, ϕT 〉H

}
. (5)

T : L2
T,U → H is the operator that takes the distributed control and gives the

corresponding final state
T u = y(T ).

T ∗ϕT = B∗ϕ,
where ϕ is the solution to the dual problem satisfying ϕ(T ) = ϕT .



Characterisation of the solution by the dual problem

It is enough to restrict minimisation problem (P) to controls of form
u = ∇J?

(
−T ∗ϕT

)
.

For such u
J(u) = F (ϕT ),

where

F (ϕT ) = −
[
〈∇J?

(
−T ∗ϕT

)
, T ∗ϕT 〉L2

T,U
+ J?

(
−T ∗ϕT

)]
. (6)

Theorem

The solution of problem (P) is

û = ∇J?
(
−T ∗ϕ̂T

)
,

where ϕ̂T is a solution of

min
ϕT∈H

{
F (ϕT ) : ‖y(T )− yT ‖H = ε.

}
. (7)



Quadratic cost-functional

J(u) =
1

2
‖Cu− d‖2X , (8)

C – a linear bounded operator from L2
T,U to a generic Hilbert space X

We suppose that C is uniformly elliptic:

‖Cu‖X ≥ γ‖u‖L2
T,U

. (9)

It implies that it exists (C∗C)−1.

EXAMPLE

Set C = (C1, C2) and d = (d1, d2):

(C1u) (t) =
√
α(t) u(t) 1ω; (10)

(C2u) (t) =
√
β(t) yu(t) 1ω′ ; (11)

d1(t) = 0; (12)

d2(t) =
√
β(t) yd(t) 1ω′ (13)

Then

J(u) =
1

2

∫ T

0

α(t) ‖u(t)‖2L2(ω) dt +
1

2

∫ T

0

β(t) ‖yu(t)− yd(t)‖2L2(ω′) dt.



Optimal control constructive characterisation

We have shown that the solution is of the form

û = ∇J?
(
−T ∗ϕ̂T

)
, (14)

where ϕ̂T is the solution of minimisation problem (7).
For quadratic functional J = 1

2
‖Cu− d‖2X the formula (14) becomes

û = −GB∗e(t−T )A∗ ϕ̂T︸ ︷︷ ︸
uc

+GC∗d︸ ︷︷ ︸
ũ

, (15)

where G = (C∗C)−1, while ϕ̂T is the minimiser of the problem (7).

We have to determine ϕ̂T .



Optimal control constructive characterisation

For J = 1
2
‖Cu− d‖2X we have

ϕ̂T = arg min
ϕT∈H

{
F (ϕT )

}
= arg min

ϕT∈H

{
〈MT ϕT , ϕT 〉H

}
, (16)

where Mt : H → H is given by:

Mt

(
ϕT
)

=

∫ t

0

e(s−t)AB
{[

(C∗C)
−1
(
B∗e(·−T )A∗ϕT

)]
(s)
}
ds. (17)

In addition
y(T ) = −MTϕ

T + ỹ(T ).

Consequently, the original problem (P) is equivalent to

(
P ′
)

min
ϕT∈H

 〈MT ϕT , ϕT 〉H : ‖MT ϕT − ỹ(T )︸ ︷︷ ︸
−y(T )

+yT ‖H = ε

 . (18)

– a standard constrained optimisation problem.



Optimal control constructive characterisation
Introduce the Lagrange functional

L
(
ϕT , µ

)
= 〈MT ϕT , ϕT 〉H + µ

(
‖MT ϕT − ỹ(T ) + yT ‖2H − ε2

)
.

The optimality condition gives

(MT +M∗T ) ϕ̂T + 2µ̂M∗T

(
MT ϕ̂T − ỹ(T ) + yT

)
= 0, (19)

implying (MT is symmetric)

ϕ̂T =
[
MT (I + µ̂MT )

]−1

︸ ︷︷ ︸
Rµ̂MT

[
µ̂MT

(
ỹ(T )− yT

)]
.

The explicit expression

ϕ̂T = Rµ̂MT

[
µ̂
(
ỹ(T )− yT

)]
of the minimisator in terms of the given data and the unknown scalar µ̂.

Putting it in the constraint

‖MT ϕ̂T − ỹ(T ) + yT ‖H = ε. (20)

we get

ε = ‖Rµ̂MT
(
ỹ(T )− yT

)
‖H. (21)



Geometrical interpretation

Figure: Geometrical interpretation of the optimal final state.

Optimal control û - expressed by optimal dual final-state ϕ̂T .

Optimal dual final-state ϕ̂T – expressed by optimal Lagrange multiplier.



Optimal control constructive characterisation

Let g : R+ → R+ be given by

g (µ) = ‖RµMT
(
ỹ(T )− yT

)
‖2H. (22)

The problem is reduced to a scalar (nonlinear) equation

g (µ̂) = ε2.

The equation is well defined for every ε < ‖ỹ(T )− yT ‖.



The constructive algorithm

• Find the real value µ̂ (optimal Lagrange multiplier) as the unique solution
to

g(µ̂) = ε2;

for g given by (22).

• Find the vector ϕ̂T ∈ H (optimal dual final-state), as

ϕ̂T = Rµ̂MT

[
µ̂
(
ỹ(T )− yT

)]
,

for RµMT = (I + µMT )−1 and MT given by (17).

• Find the function ϕ̂ (t) (optimal dual variable), given by

ϕ̂(t) = e(t−T )A∗ ϕ̂T .

• The optimal control is given by

û = −GB∗ϕ̂︸ ︷︷ ︸
uc

+GC∗d︸ ︷︷ ︸
ũ

,

where G = (C∗C)−1.



Interpretation of uc

The constrained component of the optimal control

uc = − (C∗C)
−1︸ ︷︷ ︸

Delicate part

B∗ϕ̂ .

We show

uc = − 1

α
B∗ϕ

where ϕ is the solution to the system
y′ +Ay = − 1

α
BB∗ϕ

y(0) = 0

−ϕ′ +Aϕ = βy

ϕ(T ) = ϕ̂T = µ̂(ŷ(T )− yT ).

(23)

This is the optimality system of the penalisation problem

min
u

{1

2

∫ T

0

α(t)‖u(t)‖2Hdt+
1

2

∫ T

0

β(t)‖yu(t)‖2Hdt+
µ̂

2
‖yu(T )− yT ‖2H

}
.



Spectral decomposition

Denote:
(ψn)n∈N – an orthonormal basis of H, consisting of eigenfunction of A
(λn)n∈N – a sequence of corresponding (nonnegative) eigenvalues λn,

limn λn = +∞.
yn – the n-th Fourier coefficient of y ∈ H.

The optimality system (23) can be rewritten as a 2nd order ODE

− ϕ′′ + β′

β
ϕ′ + (A2 − β′

β
A+

β

α
BtB∗t )ϕ = 0 .

If BtB∗t is diagonalisable in the same basis of eigenfunctions of A the system
can be solved component-wise.
Similarly, the operator MT

MT

(
ϕT
)

=

∫ T

0

e(s−T )ABs
{[

(C∗C)
−1
(
B∗e(·−T )A∗ϕT

)]
(s)
}
ds,

can be presented by an infinite matrix with entries

(Mt)jk =

∫ T

0

〈
(C∗C)

−1
[
B∗eλj(·−T )ψj

]
(s) , B∗eλk(s−T )ψk

〉
H
ds. (24)

Truncation - required for practical implementation of the algo



Control cost- example

min
u∈L2((0,L)×(0,T ))

{∫ T

0

α(t)‖u(t)‖2L2(0,L) : ‖y(T )− yT ‖L2(0,π) ≤ ε
}

where:

I α = e5t, L = π, T = 1 and
∂ty(x, t)− ∂xxy(x, t) = u(x, t) · Iωc(x) x ∈ (0, L) , t ∈ [0, T ]

y(0, t) = y(L, t) = 0 t ∈ [0, T ]

y(x, 0) = 0 x ∈ [0, L] ,

with ωc =
(
L
8
, L

4

)
∪
(
L
2
, 3L

4

)
;



Exmple - Control cost

I final target (blue):

yT (x) =
L

2
− ‖x− L

2
‖;

We used ψn(x) =
√

2
L
· sin(nxπ

L
), λn = n2 and N = 230.



ε2 = 0.5ε2N

ε2 = [1, 0.05 ]



Example - Trajectory regulation

min
u

{
α

∫ T

0

|u (t)|2 dt+ β

∫ T

0

∣∣∣y (t)− yd
∣∣∣2 dt : ‖y(T )− yT ‖L2(0,π) ≤ ε

}
,

where:

I equation: the same as before, but with ωc = Ω;

I final target (T = 1):

yT (x) = 3 exp

(
−15

(
x− 3π

4

)2
)

;

I trajectory target: for t1 = 2
3
T ,

yd(x, t) = 5 exp

(
−15

(
x− π

4

)2)
I[0,t1](t);

I β = 1;

We used N = 25.



Figure: Red: yT . Blue: yd.

yd is targeted just during t ∈ [0, 2
3
].



Figure: For α = 0.01 and ε2 = 0.05, the optimal control (Left) and the optimal state
(Right). Red line: yT . Blue line: yd.



Figure: For α = 0.001 and ε2 = 0.05, the optimal control (Left) and the optimal state
(Right). Red line: yT . Blue line: yd.



Conclusion

The new approach:

– exploring spectral representation of the solution by eigenfunctions of A,

– an explicit expression of the optimal constrained control in terms of the
given problem data.

– the numerical issues are reduced to finding the unique root of a scalar
function.

– same formula applies independently of the dimension.
No curse of dimensionality.

Price to pay:

– knowledge of eigenfunctions,
If the problem has to be considered many times for different data, but the
same operator, this can be done offline.

Thanks for your attention!
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