

Prirodoslovno-matematički fakultet Matematički odsjek Sveučilište u Zagrebu

Numerical resolvent calculus and filtered subspace iteration for self-adjoint operators ConDys – Second project meeting, November 1, 2017

Luka Grubišić Department of Mathematics, University of Zagreb luka.grubisic@math.hr

Joint work with Jay Goplakrishnan and Jeffrey Ovall

1 About the problem

- 2 About the method
- **3** Discretizing the resolvents
- **4** Numerical experiments

Model operator

$$\mathcal{A}u = - \bigtriangleup u - Vu, \qquad u \in H^1_*(\Omega).$$

- $\Omega \subset \mathbf{R}^d$ open and bounded
- \mathcal{A} self-adjoint and unbounded
- $(\xi \mathcal{A})^{-1}$ operator valued function
- Spec(A) is countable without finite accumulation points.
- Notation: $\mathcal{A}\psi_i = \lambda_i\psi_i$, and $-\|V\| \le \lambda_1 \le \lambda_2 \le \cdots$
- We are counting eigenvalues with multiplicity.
- Variational (energy) scalar product $(u, v)_{\mathcal{V}} = \mathfrak{a}[u, v], u, v \in H^1_*(\Omega)$.

Model operator

$$\mathcal{A}u = - \bigtriangleup u - Vu, \qquad u \in H^1_*(\Omega).$$

- $\Omega = \mathbf{R}^d$
- \mathcal{A} self-adjoint and unbounded
- $(\xi \mathcal{A})^{-1}$ operator valued function
- It holds for the discrete spectrum $\operatorname{Spec}_{\mathit{disc}}(\mathcal{A}) \subset [\operatorname{inf} V, 0
 angle$
- Notation: Aψ_i = λ_iψ_i, and -||V|| ≤ λ₁ ≤ λ₂ ≤ ··· < 0 are only isolated eigenvalues call them Λ
- We are counting eigenvalues with multiplicity.
- Variational (energy) scalar product $(u, v)_{\mathcal{V}} = \mathfrak{a}[u, v]$, $u, v \in H^1_*(\Omega)$.

Bounded and extended states

Quantum states from chebfun $V(t) = -50 \exp(-t^2) + 0.7 \exp(-(t-3)^2)$

Bounded and extended states

Quantum states from chebfun $V(t) = -50 \exp(-t^2) + 0.7 \exp(-(t-3)^2)$

• We consider \mathcal{A}_R on finite Ω_R .

Bounded and extended states

Quantum states from chebfun $V(t) = -50 \exp(-t^2) + 0.7 \exp(-(t-3)^2)$

- We consider \mathcal{A}_R on finite Ω_R .
- Perturbation argument: put a contour on [−||V||,0⟩, unwanted clustered eigenvalues in [0,∞⟩.

About the problem

Bounded and extended states - also in 2D

- 1 About the problem
- 2 About the method
- **3** Discretizing the resolvents
- **4** Numerical experiments

1 Start from sa self adjoint operator A and its spectrum $\Sigma(A)$

- **1** Start from sa self adjoint operator A and its spectrum $\Sigma(A)$
- **2** Target $\Lambda \subset \Sigma(A)$ consisting of *m* isolated points, where we count the eigenvalues according to multiplicity.

- **1** Start from sa self adjoint operator A and its spectrum $\Sigma(A)$
- **2** Target $\Lambda \subset \Sigma(A)$ consisting of *m* isolated points, where we count the eigenvalues according to multiplicity.
- Also, let E be the (m-dimensional) span of the corresponding eigenvectors,

- **1** Start from sa self adjoint operator A and its spectrum $\Sigma(A)$
- **2** Target $\Lambda \subset \Sigma(A)$ consisting of *m* isolated points, where we count the eigenvalues according to multiplicity.
- 3 Also, let E be the (m-dimensional) span of the corresponding eigenvectors,
- 4 And so the heroes are:

$$\Lambda = \{\lambda_1, \ldots, \lambda_m\}, \qquad E = \operatorname{span}\{e_1, \ldots, e_m\}, \qquad Ae_i = \lambda_i e_i.$$

The tools

• Let Γ be a simple closed contour enclosing Λ

• Define

$$r(z) = \frac{1}{2\pi \, \mathbf{1}\mathbf{i}} \int_{\Gamma} (\xi - z)^{-1} = \begin{cases} 1 & , z \in G \\ 0 & , z \in \mathbb{C} \setminus (\Lambda \cup \Gamma) \end{cases}$$

.

• Spectral projection of A for Γ is

$$\mathcal{S}=r(\mathcal{A})=rac{1}{2\pi\,1\mathsf{i}}\int_{\Gamma}(\xi-\mathcal{A})^{-1}\,\,d\xi$$
 .

• If $Au = \lambda u$ then $r(A)u = r(\lambda)u$.

The tools

- Let Γ be a simple closed contour enclosing Λ

• Define

$$r(z) = \frac{1}{2\pi \, \mathbf{1}\mathbf{i}} \int_{\Gamma} (\xi - z)^{-1} = \begin{cases} 1 & , z \in G \\ 0 & , z \in \mathbb{C} \setminus (\Lambda \cup \Gamma) \end{cases}$$

.

• Spectral projection of A for Γ is

$$S=r(\mathcal{A})=rac{1}{2\pi\,1\mathbf{i}}\int_{\Gamma}(\xi-\mathcal{A})^{-1}\,d\xi$$
 .

• If
$$Au = \lambda u$$
 then $r(A)u = r(\lambda)u$.
• $r_N(\cdot)$ is "ripping" Λ from $\Sigma(A)!$

Numerical analyst's take

• Rational approximation of *r*:

$$r(\xi) = rac{1}{2\pi \, 1 \mathbf{i}} \int_{\Gamma} (\xi - z)^{-1} \, d\xi pprox r_N(\xi) = \sum_{i=1}^{N-1} \omega_i (z_i - \xi)^{-1} \, d\xi$$

Numerical analyst's take

• Rational approximation of r:

$$r(\xi) = rac{1}{2\pi \, 1 \mathbf{i}} \int_{\Gamma} (\xi - z)^{-1} \, d\xi pprox r_N(\xi) = \sum_{i=1}^{N-1} \omega_i (z_i - \xi)^{-1} \, .$$

• If $Au = \lambda u$ then $r_N(A)u = r_N(\lambda)u$.

Numerical analyst's take

• Rational approximation of r:

$$r(\xi) = rac{1}{2\pi \, 1 \mathbf{i}} \int_{\Gamma} (\xi - z)^{-1} \, d\xi pprox r_N(\xi) = \sum_{i=1}^{N-1} \omega_i (z_i - \xi)^{-1} \; .$$

- If $Au = \lambda u$ then $r_N(A)u = r_N(\lambda)u$.
- We use $(S_N :=)$ $r_N(A) = \sum_{i=1}^{N-1} \omega_i (z_i A)^{-1}$

• Rational approximation of *r*:

$$r(\xi) = rac{1}{2\pi \, 1 \mathbf{i}} \int_{\Gamma} (\xi - z)^{-1} \, d\xi pprox r_N(\xi) = \sum_{i=1}^{N-1} \omega_i (z_i - \xi)^{-1} \; .$$

- If $Au = \lambda u$ then $r_N(A)u = r_N(\lambda)u$.
- We use $(S_N :=)$ $r_N(A) = \sum_{i=1}^{N-1} \omega_i (z_i A)^{-1}$
- $r_N(\cdot)$ is filtering Λ from $\Sigma(A)$!

Note!

ldeal for subspace iteration towards the dominant spectral component

Note!

Ideal for subspace iteration towards the dominant spectral component We know which singular values of $r_N(A)$ are big and which are small That is – just by looking at properties of a priori known $r_N(\cdot)$ –

- **1** one can transform E into the dominant eigenspace of the filtered operator $r_N(A)$ provided Λ separated from the unwanted component
- **@** we quantify the separation using $y \in \mathbb{R}$, $\delta > 0$ and $\gamma > 0$ such that $\Lambda \subset \{x \in \mathbb{R} : |x-y| < \gamma\}, \qquad \Sigma(A) \setminus \Lambda \subset \{x \in \mathbb{R} : |x-y| \ge (1+\delta)\gamma\}$
- **3** we detect separation form the decay rates of the singular values of $r_N(A)$

Spectral separation SVD picture

Spectral separation SVD picture

Study circle filters

The ratio

$$\kappa = \sup_{\mu \in \Sigma(A) \setminus \Lambda} |r_N(\mu)| / \min_{\lambda \in \Lambda} |r_N(\lambda)|$$
(1)

is a measure of filter quality (for separating spectral components). Let y, γ , be as before, then

$$W = \sum_{k=0}^{N-1} |w_k|, \qquad \hat{\kappa} = \frac{\sup_{x \in O_{\delta,\gamma}^y} |r_N(x)|}{\inf_{x \in I_{\gamma}^y} |r_N(x)|}, \qquad (2)$$

where $\mathcal{O}_{\delta,\gamma}^{\mathbf{y}} = \{ x \in \mathbb{R} : |x-y| \ge (1+\delta)\gamma \}$ and $\mathcal{I}_{\gamma}^{\mathbf{y}} = \{ x \in \mathbb{R} : |x-y| \le \gamma \}.$

The ratio

$$\kappa = \sup_{\mu \in \Sigma(A) \setminus \Lambda} |r_N(\mu)| / \min_{\lambda \in \Lambda} |r_N(\lambda)|$$
(1)

is a measure of filter quality (for separating spectral components). Let y, γ , be as before, then

$$W = \sum_{k=0}^{N-1} |w_k|, \qquad \hat{\kappa} = \frac{\sup_{x \in O_{\delta,\gamma}^{\vee}} |r_N(x)|}{\inf_{x \in I_{\gamma}^{\vee}} |r_N(x)|} , \qquad (2)$$

where $O_{\delta,\gamma}^{y} = \{x \in \mathbb{R} : |x - y| \ge (1 + \delta)\gamma\}$ and $l_{\gamma}^{y} = \{x \in \mathbb{R} : |x - y| \le \gamma\}$. Since $\kappa \le \hat{\kappa}$, the quantity $\hat{\kappa}$ gives a bound for the filter quality.

Lemma (Properties of circle filters)

Consider the circle filters givenon the previous figure. We have

$$W = \eta \le \gamma$$
, for both filters. (3a)

If N is even, then

$$\hat{\kappa} = \frac{2}{(1+\delta)^{N}+1} < 1 \qquad \text{for the first filter,} \qquad (3b)$$
$$\hat{\kappa} = \frac{1}{2(1+\delta)^{N}-1} < 1 \qquad \text{for the second filter.} \qquad (3c)$$

 γ is **radius**, δ is the **suck-in** parameter.

Separation assumption revisited

How do we check the separation assumption

- By sampling
- **1** Apply S_N to a randomly selected orthonormal basis $\{u_1, \cdots, u_b\}$
- 2 Numerically determine the dimension using SVD.
- 8 Rapid decay of singular values indicates right dimension. Small for the circle filter (properties of the known rational function)means much smaller than 1/2!
- It is an unbiased estimator of the number of eigenvalues inside the circle.

- Let W be a (complex) Hilbert space and let B : W → W be a bounded linear operator.
- Let Υ be a finite set of eigenvalues of finite multiplicity of B that are isolated from the rest of Σ(B).
- Consider B
 _ℓ = B + Δ_ℓ where Δ_ℓ : W → W is a bounded linear operator representing perturbations at step / of the iteration.
- The iterations are started using a given initial finite-dimensional subspace $Q_0 \subset \mathcal{W}$.
- At step ℓ , the *inexact subspace iteration* computes the subspace

$$Q_\ell = ilde{B}_\ell Q_{\ell-1}, \qquad \ell = 1, 2, \dots.$$
 (4)

Lemma

Suppose dim(PQ_0) = dim(Ran(P)). Then for each $0 \neq \mu \in \Upsilon$ and $0 \neq v \in W$ satisfying $Bv = \mu v$, there is a sequence $q^{(\ell)}$, $\ell = 0, 1, 2, ...$, such that $q^{(\ell)} \in Q_\ell$ and

$$\mathbf{v}-\mathbf{q}^{(\ell)}=rac{1}{\mu^\ell}B^\ell(\mathbf{I}-\mathbf{P})(\mathbf{v}-\mathbf{q}^{(0)})+rac{1}{\mu^\ell}\left[B^\ell-\left(ilde{B}_\ell ilde{B}_{\ell-1}\cdots ilde{B}_1
ight)
ight]\mathbf{q}^{(0)}.$$

Ideal FEAST

- Set $\mu^* = \operatorname{rad}(B(I P))$, the spectral radius of B(I P) in \mathcal{W} .
- The set Υ is a set of dominant eigenvalues if $\mu^* < |\mu|$ for all $\mu \in \Upsilon$.

Lemma

Suppose v and $q^{(\ell)}$ are as before, and $\Delta_{\ell} = 0$ for all ℓ . Then for any $\varepsilon > 0$, there is an integer $\ell_0 \ge 1$ such that for all $\ell \ge \ell_0$,

$$\|\mathbf{v}-\mathbf{q}^{(\ell)}\|_{\mathcal{W}} \leq \left|rac{arepsilon+\mu^*}{\mu}
ight|^\ell \|\mathbf{v}-\mathbf{q}^{(0)}\|_{\mathcal{W}}.$$

If in addition B is selfadjoint with respect to the inner product of W, then we may choose $\varepsilon = \ell_0 = 0$.

- **1** Consider the subspace iteration with perturbed filter $\tilde{B}^{(\ell)}$ set to $\tilde{S}_N^{(\ell)} = S_N + \Delta_\ell$
- 2 The perturbation size is measured by

$$\tilde{S}_{N}^{(\ell)} = S_{N} + \Delta_{\ell}, \qquad \|\Delta_{\ell}\|_{\mathcal{V}} \le \tau \|S_{N}\|_{\mathcal{V}}.$$
(5)

Inexact subspace iteration – use a priori bounds on $r_N!$

$$r_{N}^{*} = \sup_{\lambda \in \Sigma(\mathcal{A}) \setminus \Lambda} |r_{N}(\lambda)|, \qquad \kappa_{i} = \frac{r_{N}^{*}}{|r_{N}(\lambda_{i})|}, \qquad \beta_{i} = \frac{\max_{1 \le j \le m} |r_{N}(\lambda_{j})|}{|r_{N}(\lambda_{i})|}.$$
(6)

Theorem

Let Q_{ℓ} be given by subspace iteration with $\tilde{B}_{\ell} = \tilde{S}_{N}^{(\ell)}$ starting from a $Q_{0} \subseteq \mathcal{V}$ satisfying dim $(SQ_{0}) = m$. Then for each e_{i} , there is a sequence $q_{i}^{(\ell)}$ in Q_{ℓ} satisfying

$$\|m{e}_i-m{q}_i^{(\ell)}\|_{\mathcal{V}} \leq \, \kappa_i^\ell \, \|m{e}_i-m{q}_i^{(0)}\|_{\mathcal{V}} + [(1+ au)^\ell - 1]eta_i^\ell \|m{q}_i^{(0)}\|_{\mathcal{V}}$$

for all $\ell \geq 0$ and $i = 1, \ldots, m$.

FEAST = filtered subspace iteration + RR extraction

Draws from two backgrounds!

- Contour integration
- Discrete resolvent approximation

FEAST = filtered subspace iteration + RR extraction

Eigenvalue Solvers Motivated by Contour Integrals:

- Sakurai, Sugiura. A projection method for generalized eigenvalue problems using numerical integration. J. Com. Math. Appl. (2003)
- Sakuria, Tadano. CIRR: A Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems. Hok. Math. J. (2007)
- Polizzi. Density-matrix-based algorithm for solving eigenvalue problems. Phys. Rev. B (2009)
- Güttel, Polizzi, Tang, Viaud. Zolotarev quadrature rules and load balancing for the FEAST eigensolver. SIAM J. Sci. Comput. (2015)

FEAST = filtered subspace iteration + RR extraction

Eigenvalue Solvers Motivated by Contour Integrals:

- Sakurai, Sugiura. A projection method for generalized eigenvalue problems using numerical integration. J. Com. Math. Appl. (2003)
- Sakuria, Tadano. CIRR: A Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems. Hok. Math. J. (2007)
- Polizzi. Density-matrix-based algorithm for solving eigenvalue problems. Phys. Rev. B (2009)
- Güttel, Polizzi, Tang, Viaud. Zolotarev quadrature rules and load balancing for the FEAST eigensolver. SIAM J. Sci. Comput. (2015)

The perturbation: Discontinuos Petrov-Galerkin (DPG) projection

- Demkowicz, Gopalakrishnan. A primal DPG method without a first order reformulation. Comput. Math. Appl. (2013)
- Goplalkrishnan, Qui. An analysis of the practical DPG method. Math. Comput. (2014)

1 About the problem

- 2 About the method
- **3** Discretizing the resolvents
- **4** Numerical experiments

Rational approx. + FEM projection

• Rational approximation of r:

$$r(\xi) = rac{1}{2\pi \, 1 \mathbf{i}} \int_{\Gamma} (\xi - z)^{-1} \, d\xi pprox r_N(\xi) = \sum_{i=1}^{N-1} \omega_i (z_i - \xi)^{-1} \, .$$

• Take
$$R_h(z): L^2(\Omega) o \mathcal{V}_h$$
, and define

$$S_{N,h} = \sum_{i=1}^{N-1} \omega_i R_h(z_i) \; .$$

Rational approx. + FEM projection

• Rational approximation of r:

$$r(\xi) = rac{1}{2\pi \, 1 \mathbf{i}} \int_{\Gamma} (\xi - z)^{-1} \, d\xi pprox r_N(\xi) = \sum_{i=1}^{N-1} \omega_i (z_i - \xi)^{-1} \, .$$

• Take
$$R_h(z): L^2(\Omega) o \mathcal{V}_h$$
, and define

$$S_{N,h} = \sum_{i=1}^{N-1} \omega_i R_h(z_i) \; .$$

• $R_h(.)$ is a FEM realization of the resolvent.

Theorem

Suppose z lies in a bounded set of diameter D in the complex plane. There is a C > 0 depending only on D and the shape regularity of the mesh Ω_h such that for all $f \in L^2(\Omega)$,

$$\|R(z)f - R_h(z)f\|_{\mathcal{V}} \leq \frac{C}{d(z)} \left[\inf_{w_h \in L_h} \|u - w_h\|_{H^1(\Omega)} + \inf_{q_h \in RT_h} \|q - q_h\|_{H(\operatorname{div},\Omega)} \right]$$

where u = R(z)f and q = grad u.

Theorem

Suppose z lies in a bounded set of diameter D in the complex plane. There is a C > 0 depending only on D and the shape regularity of the mesh Ω_h such that for all $f \in L^2(\Omega)$,

$$\|R(z)f - R_h(z)f\|_{\mathcal{V}} \leq \frac{C}{d(z)} \left[\inf_{w_h \in L_h} \|u - w_h\|_{H^1(\Omega)} + \inf_{q_h \in RT_h} \|q - q_h\|_{H(\operatorname{div},\Omega)} \right]$$

where u = R(z)f and q = grad u.

DPG approximates R(z) = (z - A)⁻¹ with R_h(z) stably even for preasymptotic h.

Theorem

Suppose z lies in a bounded set of diameter D in the complex plane. There is a C > 0 depending only on D and the shape regularity of the mesh Ω_h such that for all $f \in L^2(\Omega)$,

$$\|R(z)f - R_h(z)f\|_{\mathcal{V}} \leq \frac{C}{d(z)} \left[\inf_{w_h \in L_h} \|u - w_h\|_{H^1(\Omega)} + \inf_{q_h \in RT_h} \|q - q_h\|_{H(\operatorname{div},\Omega)} \right]$$

where u = R(z)f and q = grad u.

DPG approximates R(z) = (z - A)⁻¹ with R_h(z) stably even for preasymptotic h.

• For circle filter
$$\|S_N\|_{\mathcal{V}} > 1/2$$
 and so $\tau \leq \frac{2CW}{\min_{k=1,\dots,N} d(z_k)^2} h_\ell^{\min(p,s_E)}$.

Theorem

Suppose z lies in a bounded set of diameter D in the complex plane. There is a C > 0 depending only on D and the shape regularity of the mesh Ω_h such that for all $f \in L^2(\Omega)$,

$$\|R(z)f - R_h(z)f\|_{\mathcal{V}} \leq \frac{C}{d(z)} \left[\inf_{w_h \in L_h} \|u - w_h\|_{H^1(\Omega)} + \inf_{q_h \in RT_h} \|q - q_h\|_{H(\operatorname{div},\Omega)} \right]$$

where u = R(z)f and q = grad u.

DPG approximates R(z) = (z - A)⁻¹ with R_h(z) stably even for preasymptotic h.

• For circle filter $||S_N||_{\mathcal{V}} > 1/2$ and so $\tau \leq \frac{2CW}{\min_{k=1,\dots,N} d(z_k)^2} h_{\ell}^{\min(p,s_E)}$.

• Can incorporate errors in iterative solvers or other linear algebra errors in computing the action of $R_h(z)$.

•
$$u = \arg-\min_{x \in H^1} ||(z - A)x - f||_{-1}$$

•
$$u = \operatorname{arg-min}_{x \in H^1} ||(z - A)x - f||_{-1}$$

•
$$u_h = \operatorname{arg-min}_{x \in L_h} ||(z - A)x - f||_{-1}$$

•
$$u = \operatorname{arg-min}_{x \in H^1} ||(z - A)x - f||_{-1}$$

•
$$u_h = \operatorname{arg-min}_{x \in L_h} \| (z - A)x - f \|_{-1}$$

•
$$u_{h,DPG} = \operatorname{arg-min}_{x \in L_h} ||(z - A)x - f||_{DG,-1}$$

 $\|\cdot\|_{DG,-1}$ is the discontinuous Galerkin approximation of $\|\cdot\|_{-1}$.

•
$$u = \operatorname{arg-min}_{x \in H^1} ||(z - A)x - f||_{-1}$$

•
$$u_h = \operatorname{arg-min}_{x \in L_h} \| (z - A)x - f \|_{-1}$$

•
$$u_{h,DPG} = \operatorname{arg-min}_{x \in L_h} ||(z - A)x - f||_{DG,-1}$$

 $\|\cdot\|_{DG,-1}$ is the discontinuous Galerkin approximation of $\|\cdot\|_{-1}$. Good theoretical framework because inf-sup is implicitly established. In a stronger norm under the assumption that there is a number $s_{\!E}$ such that

$$\|u^{f}\|_{H^{1+s_{E}}(\Omega)} \leq C_{reg} \|f\|_{\mathcal{V}} \quad \text{ for any } f \in E,$$
(7)

where u^f is such that $-\triangle u^f = f$, we get

$$\|R(z)v - R_h(z)v\|_{H^1(\Omega)} \le rac{C}{d(z)^2} h^{\min(p,s_E)} \|v\|_{H^1(\Omega)}$$
 for all $v \in E$ (8)

In a stronger norm under the assumption that there is a number $s_{\!E}$ such that

$$\|u^{f}\|_{H^{1+s_{E}}(\Omega)} \leq C_{reg} \|f\|_{\mathcal{V}} \quad \text{ for any } f \in E,$$
(7)

where u^f is such that $-\triangle u^f = f$, we get

$$\|R(z)v - R_h(z)v\|_{H^1(\Omega)} \le \frac{C}{d(z)^2} h^{\min(p,s_E)} \|v\|_{H^1(\Omega)}$$
 for all $v \in E$ (8)

Here we assumed that V_h is a piecewise polynomial space with polynomials of degree p.

All together

Based on

$$\|S_N - S_N^h\|_{\mathcal{V}} \le W \max_{k=1,...,N} \|R_h(z_k) - R(z_k)\|_{\mathcal{V}} \to 0$$
(9)

All together

Based on

$$\|S_N - S_N^h\|_{\mathcal{V}} \le W \max_{k=1,...,N} \|R_h(z_k) - R(z_k)\|_{\mathcal{V}} \to 0$$
(9)

• for eigenvectors

$$\operatorname{gap}_{\mathcal{V}}(E, E_h) \leq C_N W \max_{k=1, \dots, N} \left\| \left(R(z_k) - R_h(z_k) \right) \right\|_E \right\|_{\mathcal{V}}, \qquad (10)$$

All together

Based on

$$\|S_N - S_N^h\|_{\mathcal{V}} \le W \max_{k=1,...,N} \|R_h(z_k) - R(z_k)\|_{\mathcal{V}} \to 0$$
(9)

• for eigenvectors

$$\operatorname{gap}_{\mathcal{V}}(E, E_h) \leq C_N W \max_{k=1,\dots,N} \left\| \left(R(z_k) - R_h(z_k) \right) \right\|_E \right\|_{\mathcal{V}}, \quad (10)$$

• and eigenvalues

$$\operatorname{dist}(\Lambda, \Lambda_h) \leq C_a \operatorname{gap}_{\mathcal{V}}(E, E_h)^2.$$

follow

- 1 About the problem
- 2 About the method
- **3** Discretizing the resolvents
- **4** Numerical experiments

The filter – a priori properties cf. S. Guettel

	λ_1		λ_2		λ_3	
h	ERR	NOC	ERR	NOC	ERR	NOC
2 ⁻²	4.85e-02		1.34e-02		2.36e-02	
2 ⁻³	2.01e-02	1.27	2.18e-03	2.61	3.76e-03	2.65
2 ⁻⁴	7.74e-03	1.37	1.97e-04	3.47	2.36e-04	3.99
2 ⁻⁵	3.05e-03	1.34	2.18e-05	3.17	1.48e-05	3.99
2 ⁻⁶	1.21e-03	1.34	2.81e-06	2.96	9.27e-07	4.00

Table: Eigenvalue errors (ERR) and numerical order of convergence (NOC) for the smallest three eigenvalues on the L-shaped domain.

				NGSolve				
Quit Ger	nerate Mesh	Stop	Visual	Solve PDE	Recent	Solution 0	Zoom All	Cente
	0.2%e-01	-4.853	- 05	1.213e-42		4.2050-01	1.4%-4	
E,								Hetper 6.3

Quit	Generate Mesh	Stop	Visual	Solve PDE	Recent	Solution 0	Zoom All	Cente
	0.021-00	48	14.05	-2 021a-00		4.Tite H	1.77ml	
E.								Helpen 6.2

			NG					
Quit	Generate Mesh	Stop	Visual	Solve PDE	Recent	Solution 0	Zoom All	Center
	_						-	
	-4.7540-42	-4.439-4	2	-5.956-81	4.2	Ma-42	9.61%-42	
				XXXX	XXX	<u>_</u>		
		ST.			TXX			
			CA V	\times				
				AL.				
				XXA				
			CO A	AAR				
				XAXX.				
				XXXX	XXX	2		
Ŀ								lietgen 6.5
Deleter 20	t Elementer A Pro	d Firemann 178						

a Matlab implementation of FEAST + **Chebyshev** polynomial discretization – the growth of the algebraic error

• eigenvalues of infinite multiplicity

- eigenvalues of infinite multiplicity
- indefinite operators (Maxwell, Dirac,...)

- eigenvalues of infinite multiplicity
- indefinite operators (Maxwell,Dirac,...)
- nonlocal operators

- eigenvalues of infinite multiplicity
- indefinite operators (Maxwell, Dirac,...)
- nonlocal operators
 - fractional differential operators
 - semi-groups
 - ► etc

Acknowledgment

Research supported in part by the Croatian Science Foundation grant nr. HRZZ 9345

Acknowledgment

Research supported in part by the Ministry of Science and Education bilateral MZO-NSF grant. Thank you for your attention!