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Model operator

Model operator

Au=—-Au— Vu, ue HY{(Q).

Q c RY open and bounded
A self-adjoint and unbounded

(¢ — A)~! operator valued function

Spec(.A) is countable without finite accumulation points.
Notation: Avy; = A\jyhj, and —||V|| <A1 <A < -

e We are counting eigenvalues with multiplicity.

Variational (energy) scalar product (u, v)y = a[u, v], u,v € HX(Q).
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Model operator

Model operator

Au=—Au— Vu, ue HYQ).

Q= R¢
A self-adjoint and unbounded

(¢ — A)~! operator valued function

It holds for the discrete spectrum Specg;.(A) C [inf V,0)
Notation: Av; = A\jtbj, and —||V|| < A1 < Ay < --- < 0 are only
isolated eigenvalues » call them A

e We are counting eigenvalues with multiplicity.

Variational (energy) scalar product (u, v)y = a[u, v], u,v € HX(Q).
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Bounded and extended states

Quantum states from chebfun V/(1)—50 {exp(7t2)+0.7 exp(—(t — 3)2)}

h= 1 25eigenstates

20h

a0k

A0F

=S
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e We consider Ag on finite Qr.
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Bounded and extended states

Quantum states from chebfun V/(1)—50 {exp(7t2)+0.7 exp(—(t — 3)2)}

h= 1 25eigenstates

20h

a0k

A0F

=S

e We consider Ag on finite Qr.
e Perturbation argument: put a contour on [—|| V]|, 0), unwanted
clustered eigenvalues in [0, c0).
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Bounded and extended states — also in 2D
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@ Start from sa self adjoint operator A and its spectrum X (A)
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@ Start from sa self adjoint operator A and its spectrum X (A)

@® Target A C X(A) consisting of m isolated points, where we count the
eigenvalues according to multiplicity.

© Also, let E be the (m-dimensional) span of the corresponding
eigenvectors,
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@ Start from sa self adjoint operator A and its spectrum X (A)

@® Target A C X(A) consisting of m isolated points, where we count the
eigenvalues according to multiplicity.

© Also, let E be the (m-dimensional) span of the corresponding
eigenvectors,

® And so the heroes are:

A= {)\1, ce ,)\m}, E = span{el, ey em}, Ae,- = /\,-e,-.
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Let [ be a simple closed contour enclosing A
Define

1 -l 1 ,ze G
r(z)_%li/r(g ) _{o ,zeC\ (AUT)

Spectral projection of A for I is

S = r(A) = 5o [e- A e

If Au = Au then r(A)u = r(\)u.
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Let [ be a simple closed contour enclosing A
Define

1 -l 1 ,ze G
r(z)_%li/r(g ) _{o ,zeC\ (AUT)

Spectral projection of A for I is

1

=r(A) = T

(é A7 dg

If Au = Au then r(.A) = r(\)u.

ry(-) is “ripping” A from X (A)!
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Numerical analyst's take

e Rational approximation of r:

1 N-1

Q) = 3o [(€— 2 dem (O = Y wita -9

i=1
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Numerical analyst's take

e Rational approximation of r:

1 o _N—l »
(0= g J16- 2 el =Dl -

o If Au= Authen ry(A)u = ry(N)u.

About the method Luka Grubigi¢ 10 / 38



Numerical analyst's take

e Rational approximation of r:

1

(9= 271

/r (-2 demm(©) = Y wilz -

o If Au= Authen ry(A)u = ry(N)w.
o Weuse (Sy:=)  m(A) =N wi(z— AL
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Numerical analyst's take

e Rational approximation of r:

1 N-1

Q) = 3o [(€— 2 dem (O = Y wita -9

i=1

o If Au= Authen ry(A)u = ry(N)w.
o Weuse (Sy:=)  m(A) =N wi(z— AL

. rp(+) is filtering A from X (A)!




» The spectrum of ry(A) looks like

» Ideal for subspace iteration towards the dominant spectral component
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» The spectrum of ry(A) looks like

» Ideal for subspace iteration towards the dominant spectral component

» We know which singular values of ry(A) are blg and which are smai
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Spectral separation

That is — just by looking at properties of a priori known ry(-) —

@ one can transform E into the dominant eigenspace of of the filtered
operator ry(A) provided A separated from the unwanted component

® we quantify the separation using y € R, § > 0 and v > 0 such that
ANC{xeR:|x—y| <~} YANAC{xeR: |x—y| > (1+0)7}

© we detect separation form the decay rates of the singular values of
v(A)
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Spectral separation SVD picture
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Spectral separation SVD picture

25
3
2
25 [C
15 2 ]
16 T
1
. ]
as [e]
o0& °
q
o]
a . . \ . \ e 2 o o 9
-0 70 B0 60 40 30 20 1 2 3 4 5 B 7 g 9 10 1

About the method Luka Grubigi¢ 13 /38



Study circle filters
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Study circle filters

The ratio

k= sup [rn(p)|/ min|rn(A)] (1)
pEX(ANA AEA

is a measure of filter quality (for separating spectral components).
» Let y,~, be as before, then

. sup | (x)|
W — . XEO(‘;,’,Y 5
= |Wk|7 K= m ) ( )
k=0 xelwy

where Ot{v ={xeR:|x—y|>1+dy}and K ={xeR: |x—y| <7}
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Study circle filters

The ratio

k= sup [rn(p)|/ min|rn(A)] (1)
pEX(ANA AEA

is a measure of filter quality (for separating spectral components).
» Let y,~, be as before, then

. sup | (x)|
W — . XEO(‘;,’,Y 5
= |Wk|7 K= m ) ( )
k=0 xelwy

where Ot{v ={xeR:|x—y|>1+dy}and K ={xeR: |x—y| <7}
Since k < &, the quantity & gives a bound for the filter quality.
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Circle filters

Lemma (Properties of circle filters)

Consider the circle filters givenon the previous figure. We have
W =n<y, for both filters. (3a)

If N is even, then

2
(1+0)N+1

=
I

<1 for the first filter, (3b)

=
Il

1
m <1 for the second filter. (3c)

v is radIUS 0 is the SUCk—II‘I parameter.
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Separation assumption revisited

» How do we check the separation assumption

» By sampling

@ Apply Sy to a randomly selected orthonormal basis {u1,- -, up}
® Numerically determine the dimension using SVD.

© Rapid decay of singular values indicates right dimension. Small for the
circle filter (properties of the known rational function )means much
smaller than 1/2!

O It is an unbiased estimator of the number of eigenvalues inside the
circle.
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FEAST = filtered subspace iteration + RR extraction

e Let W be a (complex) Hilbert space and let B : W — W be a
bounded linear operator.

e Let T be a finite set of eigenvalues of finite multiplicity of B that are
isolated from the rest of X(B).

o Consider B, = B + Ay where Ay : W — W is a bounded linear
operator representing perturbations at step / of the iteration.

e The iterations are started using a given initial finite-dimensional
subspace Qg C W.

o At step ¢, the inexact subspace iteration computes the subspace

Q= BiQ1, =1,2,.... (4)
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FEAST = filtered subspace iteration + RR extraction

Lemma

Suppose dim(PQp) = dim(Ran(P)). Then for each 0 # p € T and

0 # v € W satisfying Bv = uv, there is a sequence q\¥, £ =0,1,2,. ..,
such that q©) € Q; and

1 1 - -
v—q¥) = EB"(/ —P)(v—q9)+ i [B" — (Bng_l oo Bl>] q©.
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|deal FEAST

e Set u* =rad(B(/ — P)), the spectral radius of B(/ — P) in W.
e The set T is a set of dominant eigenvalues if p* < |u| for all p € 7T.

Lemma

Suppose v and q\9) are as before, and Ay = 0 for all . Then for any
e > 0, there is an integer fo > 1 such that for all £ > £y,

e+ p*|f

lv =l < lv =" w.

If in addition B is selfadjoint with respect to the inner product of W, then
we may choose ¢ = £y = 0.
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® Consider the subspace iteration with perturbed filter B() set to
3,(\,@ =Sy + 4y
® The perturbation size is measured by

50 =Su+ e Ay < 7lSwl. )
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Inexact subspace iteration — use a priori bounds on ry!

. N maxi<j<m |rn(A))]
v=sup [rn(A)], Kj = ; Bi =
V= e () EYen] O

Theorem

—~
(@)}
~

Let Q; be given by subspace iteration with B, = :9,(\,[ ) starting from a
Qo C V satisfying dim(SQy) = m. Then for each e;, there is a sequence
qu) in Q satisfying

l
lei — ¢y < &t ller — gy + 1@ +7)° = 18Iy
forall{>0andi=1,...,m.
About the method
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FEAST = filtered subspace iteration + RR extraction

Draws from two backgrounds!
e Contour integration
e Discrete resolvent approximation
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FEAST = filtered subspace iteration + RR extraction

Eigenvalue Solvers Motivated by Contour Integrals:

e Sakurai, Sugiura. A projection method for generalized eigenvalue
problems using numerical integration. J. Com. Math. Appl. (2003)

e Sakuria, Tadano. CIRR: A Rayleigh-Ritz type method with contour
integral for generalized eigenvalue problems. Hok. Math. J. (2007)

e Polizzi. Density-matrix-based algorithm for solving eigenvalue
problems. Phys. Rev. B (2009)

e Giittel, Polizzi, Tang, Viaud. Zolotarev quadrature rules and load
balancing for the FEAST eigensolver. SIAM J. Sci. Comput. (2015)
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FEAST = filtered subspace iteration + RR extraction

Eigenvalue Solvers Motivated by Contour Integrals:

e Sakurai, Sugiura. A projection method for generalized eigenvalue
problems using numerical integration. J. Com. Math. Appl. (2003)

e Sakuria, Tadano. CIRR: A Rayleigh-Ritz type method with contour
integral for generalized eigenvalue problems. Hok. Math. J. (2007)

e Polizzi. Density-matrix-based algorithm for solving eigenvalue
problems. Phys. Rev. B (2009)

e Giittel, Polizzi, Tang, Viaud. Zolotarev quadrature rules and load
balancing for the FEAST eigensolver. SIAM J. Sci. Comput. (2015)

The perturbation: Discontinuos Petrov-Galerkin (DPG) projection

e Demkowicz, Gopalakrishnan. A primal DPG method without a first
order reformulation. Comput. Math. Appl. (2013)

o Goplalkrishnan, Qui. An analysis of the practical DPG method. Math.
Comput. (2014)
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Rational approx. + FEM projection

e Rational approximation of r:

N—-1
_ -1 ~ —
o7 i /(5 z) " de~m(¢ z_;“”

e Take Ry(z) : L2(Q) — Vp, and define

r(€) =

N—1
Snp = Z wiRn(zi)

i=1
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Rational approx. + FEM projection

e Rational approximation of r:

N—-1
_ -1 ~ —
o7 i /(5 z) " de~m(¢ ;“”

e Take Ry(z) : L2(Q) — Vp, and define

r(€) =

N—1
Snp = Z wiRn(zi)

i=1

® Rp(.) is a FEM realization of the resolvent.
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DPG resolvent approximations

Theorem

Suppose z lies in a bounded set of diameter D in the complex plane.
There is a C > 0 depending only on D and the shape regularity of the
mesh Qy, such that for all f € L?(R),

C . :
IRE R < 55 | int, = waliaay + int 4 = alave|

WhELp

where u = R(z)f and q = grad u.
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DPG resolvent approximations

Theorem

Suppose z lies in a bounded set of diameter D in the complex plane.
There is a C > 0 depending only on D and the shape regularity of the
mesh Qy, such that for all f € L?(R),

C . :
IRE R < 55 | int, = waliaay + int 4 = alave|

WhELp

where u = R(z)f and q = grad u.

o DPG approximates R(z) = (z —.A)~" with Ru(z) stably even for
preasymptotic h.

e For circle filter ||Sylly > 1/2 and so 7 < %h?in(nsd.

min d(zx)” *

.....
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DPG resolvent approximations

Theorem

Suppose z lies in a bounded set of diameter D in the complex plane.
There is a C > 0 depending only on D and the shape regularity of the
mesh Qy, such that for all f € L?(R),

C : :
IRE R < 55 | int, = waliaay + int 4 = alave|

where u = R(z)f and q = grad u.

o DPG approximates R(z) = (z — .A)~! with Ry(z) stably even for
preasymptotic h.
e For circle filter ||Sylly > 1/2 and so 7 < Wh;ﬁin(p,s;g).

e Can incorporate errors in iterative solvers or other linear algebra errors
in computing the action of Rp(z).
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DPG-in a nutshell

We are searching for u such that (z — A)u = f.
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DPG-in a nutshell

We are searching for u such that (z — A)u = f.
e u=arg-mincp|l(z — A)x — fl|1

° U= arg—minXE,_hH(Z - A)X - f”—l
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DPG-in a nutshell

We are searching for u such that (z — A)u = f.
o u—argminge (2 — A)x — s
o up = argminey, (2 A)x — £y
* upppc = arg-min¢, [[(z — A)x — fllpg,—1
| - |lpG,—1 is the discontinuous Galerkin approximation of || - ||_1.
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DPG-in a nutshell

We are searching for u such that (z — A)u = f.
o u = argmin,cpll(z — A)x — fll1
o up = argemin,cy, | (z — A)x — Fl| 1
® upppG = arg—minxeLhH(z — A)x — fllpG,—1

| - |lpG,—1 is the discontinuous Galerkin approximation of || - ||_1.
Good theoretical framework because inf-sup is implicitly established.
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Resolvent estimate

In a stronger norm under the assumption that there is a number sg such
that
lu" (|56 @y < Cregllflly~ for any f € E, (7)

where uf is such that —Auf = f, we get

IR(z)v = Ru(2)vi11(q) <

d(z)zhm‘"msﬂ”vn mq) forallve E (8)
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Resolvent estimate

In a stronger norm under the assumption that there is a number sg such
that
lu" (|56 @y < Cregllflly~ for any f € E, (7)

f

where uf is such that —Auf = f, we get

IR(z)v — Ra(z)v]| 1) < hm‘”<PﬁsE>|yv||H1(Q) forallve E (8)

d(z)?

Here we assumed that V), is a piecewise polynomial space with
polynomials of degree p.
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All together

Based on

ISv — Shilly < Wk:nfff/v |Rn(zx) — R(zk)l[y — 0 (9)

» the estimates
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All together

Based on

ISv — Shilly < Wk:nfff/v |Rn(zx) — R(zk)l[y — 0 (9)

» the estimates

e for eigenvectors

gapv(E, Eh) S CNWk:rTl],a..).(,N H(R( ) Rh Zk )‘ HV’ (10)
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All together

Based on

h
_ < _
15w = Swllv < W max [[Rh(zi) = R(zi)llv = 0 (9)
» the estimates
e for eigenvectors

gapv(E, Eh) < CNWk:rTl],a..).(,N H(R( ) Rh Zk )‘EHV’ (10)

e and eigenvalues
dist(A, Ap) < C, gapy(E, Ep)>.

follow
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The filter — a priori properties cf. S. Guettel
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For MATLAB's users obligatory L-shape reference

A1 A2 A3

h ERR NOC ERR NOC ERR NOC

277 | 4.85e-02 1.34e-02 —— | 2.36e-02 —

273 | 2.01e-02 1.27 | 2.18e-03 2.61 | 3.76e-03 2.65

274 | 7.74e-03 1.37 | 1.97e-04 3.47 | 2.36e-04 3.99
5

3.05e-03 1.34 | 2.18e-05 3.17 | 1.48e-05 3.99
1.21e-03 1.34 | 2.81e-06 2.96 | 9.27e-07 4.00

Table: Eigenvalue errors (ERR) and numerical order of convergence (NOC) for
the smallest three eigenvalues on the L-shaped domain.
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pyeigfeast

» A python implementation of FEAST + ngsolve realization of DPG.

# —#— History
—#— Quadratic convergence [
3
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pyeigfeast

» A python implementation of FEAST + ngsolve realization of DPG.

nnnnnnn 301 Elements: 0 Surf Elements: 536
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pyeigfeast

» A python implementation of FEAST + ngsolve realization of DPG.

Qut  GenerateMesh  Siop  Visual  SolePDE  Recent  Solution O ZoomAl  Center

Points: 301 Elements: 0 Surf Elements: 536
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pyeigfeast

» A python implementation of FEAST + ngsolve realization of DPG.

Qut  GenerateMesh  Siop  Visual  SobePDE  Recent  Solution © ZoomAll  Center
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Points: 301 Elements: 0 Surf Elements: 536
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pyeigfeast

» A python implementation of FEAST + ngsolve realization of DPG.

Qut GeneratoMesh  Stop Visal  SoNePDE  Recent  Soluon © ZoomAll  Conter

Points: 301 Eloments: 0 Surf Eloments: 536
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Chebfun

» a Matlab implementation of FEAST + Chebyshev polynomial
discretization — the growth of the algebraic error

h= 1 25eigenstates

20
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f
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When to use numerical rational calculuss

e eigenvalues of infinite multiplicity
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When to use numerical rational calculuss

e eigenvalues of infinite multiplicity
e indefinite operators (Maxwell,Dirac,...)
e nonlocal operators
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When to use numerical rational calculuss

e eigenvalues of infinite multiplicity
e indefinite operators (Maxwell,Dirac,...)

e nonlocal operators

» fractional differential operators
> semi-groups
> etc
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Thank you for your attention!
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