On Dissipativity in Analysis and Control of Large-scale Systems

Andrej Jokić

University of Zagreb, Croatia Faculty of Mechanical Engineering and Naval Architecture

Joint work with Ivica Nakić

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The biggest machine in the world

The biggest (most complex) machine in the world... (Fair to say:) ...but it didn't feel like it ("the most complex") during design...

(日)

The biggest machine in the world

Robustness?

- synchronous machines, inertia (desirable physical properties)
- conservative engineering
- ... and fragility
 - Blackout 9 November 1965, USA, Canada (tripping transmission line). Affected
 > 30 mil. people.
 - Thailand 1978; Canada 1989; Brazil 1999 (97 mil. people); India 2001 (226 mil. people); USA & Canada 2003; Italy 2003; Germany & France & Italy & Spain 2006; China 2008; India 2012 (670 mil. people)

... things are changing...

Number of frequency violations in Nordic grid (source: ENTSO-E)

Distributed systems / dynamic networks

(日) (日) (日) (日)

Distributed systems / dynamic networks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Outline

Introduction

Dissipativity, neutral supply functions, separation

Dissipativity Interconnection neutral supply functions (2 systems)

Dynamical networks

Acyclic networks Structured Lyapunov functions and robustness

Beyond static supply rates (separation) & Synthesis

Architecture, Constraints that de-constrain (protocols) + Examples

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outline

Introduction

Dissipativity, neutral supply functions, separation Dissipativity

Interconnection neutral supply functions (2 systems)

Dynamical networks

Acyclic networks Structured Lyapunov functions and robustness

Beyond static supply rates (separation) & Synthesis

Architecture, Constraints that de-constrain (protocols) + Examples

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proofs... certificates of separation

Verifiable characterization of whether two sets are separated \rightarrow in the heart of verity of problems.

- Hahn-Banach separation theorem
 - hyperplane separation in convex optimization (Lagrange multiplier)
- Separation of subspaces
 - Full block S-Procedure (multipliers)

Bigger picture: multipliers as protocols in architecture of dynamical networks

Full block S-Procedure in control systems has nice physical interpretation in terms of dissipativity theory. $\Box \rightarrow \langle \overline{a} \rangle \langle \overline{a$

Quadratic separation

Statement A (desired property)

 For
$$G := \begin{pmatrix} I & G_2 \\ G_1 & I \end{pmatrix}$$
 inverse G^{-1} exists and $||G^{-1}|| \le c$
 \updownarrow

 Statement B (Quadratic separation)

 Exists II such that $\begin{pmatrix} I \\ G_1 \end{pmatrix}^\top \Pi \begin{pmatrix} I \\ G_1 \end{pmatrix} \prec 0, \ \begin{pmatrix} G_2 \\ I \end{pmatrix}^\top \Pi \begin{pmatrix} G_2 \\ I \end{pmatrix} \succeq 0.$

Example

•
$$\begin{pmatrix} I & \frac{1}{s}I \\ A & I \end{pmatrix}^{-1}$$
 exists, is analytic with uniformly bounded norm in $\mathbb{C}^0 \cup \mathbb{C}^+$
• $\exists P \succ 0$ (note $\begin{pmatrix} \frac{1}{s} \\ I \end{pmatrix}^* \begin{pmatrix} 0 & P \\ P & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{s} \\ I \end{pmatrix} \succeq 0$ on $\mathbb{C}^0 \cup \mathbb{C}^+$) :
 $\begin{pmatrix} I \\ A \end{pmatrix}^\top \begin{pmatrix} 0 & P \\ P & 0 \end{pmatrix} \begin{pmatrix} I \\ A \end{pmatrix} \prec 0$, i.e. $A^\top P + PA \prec 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

Statement B (multiplier-based condition - separation)

$$\begin{pmatrix} v \\ -\frac{w}{0} \\ 0 \end{pmatrix}^{\top} \begin{pmatrix} Q & S & 0 & 0 \\ -\frac{S^{\top}}{0} & -\frac{R}{0} & \frac{Q}{Q_{p}} & -\frac{0}{S_{p}} \\ 0 & 0 & S_{p}^{\top} & R_{p} \end{pmatrix} \begin{pmatrix} v \\ -\frac{w}{0} \\ 0 \end{pmatrix} \ge 0 \quad \text{for all} \quad \Delta \in \mathbf{\Delta}$$
$$\begin{pmatrix} v \\ -\frac{w}{d} \\ z \end{pmatrix}^{\top} \begin{pmatrix} Q & S & 0 & 0 \\ -\frac{S^{\top}}{0} & -\frac{R}{Q_{p}} & -\frac{0}{S_{p}} \\ 0 & 0 & S_{p}^{\top} & R_{p} \end{pmatrix} \begin{pmatrix} v \\ -\frac{w}{d} \\ z \end{pmatrix} < 0$$

Statement B (multiplier-based condition - separation)

$$\begin{split} w^{\top} * / \begin{pmatrix} \Delta \\ I \\ 0 \\ 0 \end{pmatrix}^{\top} \begin{pmatrix} Q \\ S^{\top} \\ 0 \\ 0 \end{pmatrix}^{\top} \begin{pmatrix} Q \\ S^{\top} \\ 0 \\ 0 \\ 0 \\ 0 \\ S^{\top} \\ R_{p} \end{pmatrix} \begin{pmatrix} \Delta \\ I \\ 0 \\ 0 \end{pmatrix} \succeq 0 \text{ for all } \Delta \in \Delta / * w \\ \begin{pmatrix} v \\ d \end{pmatrix}^{\top} * / \begin{pmatrix} I \\ 0 \\ -K \\ 0 \\ M \\ N \end{pmatrix}^{\top} \begin{pmatrix} Q \\ S^{\top} \\ 0 \\ 0 \\ 0 \\ 0 \\ S^{\top} \\ 0 \\ 0 \\ S^{\top} \\ R_{p} \end{pmatrix} \begin{pmatrix} \Delta \\ I \\ 0 \\ 0 \\ 0 \\ S^{\top} \\ R_{p} \end{pmatrix} \succeq 0 \text{ for all } \Delta \in \Delta / * w \\ \begin{pmatrix} v \\ d \\ 0 \\ 0 \\ S^{\top} \\ R_{p} \\ M \\ N \end{pmatrix}^{\top} \begin{pmatrix} Q \\ S^{\top} \\ 0 \\ 0 \\ S^{\top} \\ R_{p} \\ R_{p} \end{pmatrix} \begin{pmatrix} \Delta \\ I \\ 0 \\ 0 \\ S^{\top} \\ R_{p} \\ M \\ N \end{pmatrix} \succeq 0 \text{ for all } \Delta \in \Delta / * w \\ \begin{pmatrix} v \\ d \\ 0 \\ M \\ N \\ N \end{pmatrix} \land 0 / * \begin{pmatrix} v \\ d \\ d \\ M \\ N \\ N \end{pmatrix} \end{split}$$

Statement B (multiplier-based condition - separation) $\begin{pmatrix} \Delta \\ \cdot I \\ 0 \\ 0 \end{pmatrix}^{\top} \begin{pmatrix} Q & S & 0 & 0 \\ \cdot S^{\top} & -R & 0 \\ 0 & -0 & Q_{p} & -S_{p} \\ 0 & 0 & S^{\top} & R_{p} \end{pmatrix} \begin{pmatrix} \Delta \\ I \\ 0 \\ 0 \end{pmatrix} \succeq 0 \quad \text{for all} \quad \Delta \in \mathbf{\Delta}$ $\begin{pmatrix} I & 0 \\ \cdot K \\ 0 \\ -I \\ M & N \end{pmatrix}^{\top} \begin{pmatrix} Q & S & 0 & 0 \\ \cdot S^{\top} & -R & Q_{p} & -S_{p} \\ 0 & 0 & S^{\top} & R_{p} \end{pmatrix} \begin{pmatrix} I & 0 \\ \cdot K \\ 0 \\ -I \\ M & N \end{pmatrix} \prec 0$

Statement A (desired property), A = A = A = A

Necessity: Δ compact (Scherer 2001), extension (Jokić, Nakić 2017)

Statement B (multiplier-based condition - separation)

$$\begin{pmatrix} \Delta \\ -\frac{I}{0} \\ 0 \end{pmatrix}^{\top} \begin{pmatrix} Q & S & 0 & 0 \\ -\frac{S^{\top}}{0} & -\frac{R}{0} & -\frac{Q}{0} \\ 0 & 0 & S_p^{\top} & R_p \end{pmatrix} \begin{pmatrix} \Delta \\ -\frac{I}{0} \\ 0 \end{pmatrix} \succeq 0 \quad \text{for all} \quad \Delta \in \mathbf{\Delta}$$

$$\begin{pmatrix} I & 0 \\ -\frac{K}{0} & -\frac{I}{1} \\ M & N \end{pmatrix}^{\top} \begin{pmatrix} Q & S & 0 & 0 \\ -\frac{S^{\top}}{0} & -\frac{R}{0} & -\frac{Q}{0} \\ -\frac{S}{0} & -\frac{R}{0} & -\frac{Q}{0} \\ 0 & 0 & S_p^{\top} & R_p \end{pmatrix} \begin{pmatrix} I & 0 \\ -\frac{K}{0} & -\frac{I}{1} \\ M & N \end{pmatrix} \prec 0$$

\$

Statement A (desired property) $\begin{pmatrix} d \\ z \end{pmatrix}^{\top} \begin{pmatrix} Q_p & S_p \\ S_p^{\top} & R_p \end{pmatrix} \begin{pmatrix} d \\ z \end{pmatrix} < 0 \quad \text{for all} \quad \begin{pmatrix} d \\ z \end{pmatrix} \in \text{Im} \begin{pmatrix} I \\ \Delta \star G \end{pmatrix}, \ \Delta \in \mathbf{\Delta}$

$$= (\Delta \star G)d := \begin{cases} \begin{pmatrix} w \\ z \end{pmatrix} = \underbrace{\begin{pmatrix} K & L \\ M & N \end{pmatrix}}_{G} \begin{pmatrix} v \\ d \end{pmatrix} \\ v = \Delta w, \quad \Delta \in \mathbf{\Delta} \end{cases}$$

$$\begin{array}{|c|c|c|c|c|} \hline \textbf{Statement B (multiplier-based condition)} \\ \hline & & \\ \exists \begin{pmatrix} Q & S \\ S^{\top} & R \end{pmatrix} : \begin{cases} \begin{pmatrix} \Delta \\ I \end{pmatrix}^{\top} \begin{pmatrix} Q & S \\ S^{\top} & R \end{pmatrix} \begin{pmatrix} \Delta \\ I \end{pmatrix} \succeq 0 \quad \text{for all} \quad \Delta \in \mathbf{\Delta} \\ \begin{pmatrix} I & 0 \\ -\frac{K}{0} - \frac{L}{I} \\ M & N \end{pmatrix}^{\top} \begin{pmatrix} Q & S & & \\ 0 & 0 & -\frac{K}{0} - \frac{Q}{0} \\ 0 & 0 & -\frac{K}{0} - \frac{Q}{0} \\ 0 & 0 & -\frac{K}{0} - \frac{Q}{0} \\ M & N \end{pmatrix} \prec 0 \end{array}$$

$\$

 $\begin{array}{c} \begin{array}{c} \text{Statement A (desired property)} \\ \begin{pmatrix} d \\ z \end{pmatrix}^{\top} \begin{pmatrix} Q_p & S_p \\ S_p^{\top} & R_p \end{pmatrix} \begin{pmatrix} d \\ z \end{pmatrix} < 0 \quad \text{for all} \quad \begin{pmatrix} d \\ z \end{pmatrix} \in \operatorname{Im} \begin{pmatrix} I \\ \Delta \star G \end{pmatrix}, \ \Delta \in \mathbf{\Delta} \end{array}$

Example: robust stability

Uncertain dynamical system

$$\dot{x} = A(\delta)x, \ \delta \in \boldsymbol{\delta}.$$

Uniform exponential stability condition (single quadratic Lyapunov function)

$$\exists P \succ 0 : \frac{d}{dt}(x^{\top}Px) = \begin{pmatrix} x \\ \dot{x} \end{pmatrix}^{\top} \begin{pmatrix} 0 & P \\ P & 0 \end{pmatrix} \begin{pmatrix} x \\ \dot{x} \end{pmatrix} \le 0, \ \dot{x} = A(\delta)x \text{ for all } \delta \in \boldsymbol{\delta}.$$

LFT representation of an uncertain system:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example: robust stability

$$\begin{pmatrix} w \\ \dot{x} \end{pmatrix} = \underbrace{\begin{pmatrix} K & L \\ M & N \end{pmatrix}}_{G} \begin{pmatrix} v \\ x \end{pmatrix}$$
$$v = \Delta w, \quad \Delta \in \mathbf{\Delta}$$

Statement A (desired property)

$$\begin{pmatrix} x \\ \dot{x} \end{pmatrix}^{\top} \begin{pmatrix} 0 & P \\ P & 0 \end{pmatrix} \begin{pmatrix} x \\ \dot{x} \end{pmatrix} \leq 0 \text{ for all } \Delta \in \mathbf{\Delta}.$$

Statement B (multiplier-based condition)

$$\exists \begin{pmatrix} Q & S \\ S^{\mathsf{T}} & R \end{pmatrix} : \begin{cases} \begin{pmatrix} \Delta \\ I \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} Q & S \\ S^{\mathsf{T}} & R \end{pmatrix} \begin{pmatrix} \Delta \\ I \end{pmatrix} \succeq 0 \quad \text{for all} \quad \Delta \in \mathbf{\Delta} \\ \begin{pmatrix} I & 0 \\ -\frac{K}{0} - \frac{L}{I} \\ M & N \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} Q & S & 0 \\ -\frac{K}{0} - \frac{L}{0} & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} I & 0 \\ -\frac{K}{0} - \frac{L}{I} \\ M & N \end{pmatrix} \prec 0$$

Outline

Introduction

Dissipativity, neutral supply functions, separation Dissipativity Interconnection neutral supply functions (2 systems)

Dynamical networks

Acyclic networks Structured Lyapunov functions and robustness

Beyond static supply rates (separation) & Synthesis

Architecture, Constraints that de-constrain (protocols) + Examples

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Dissipative dynamical systems (Jan Willems, 1972)

$$G : \begin{cases} \dot{x} = f(x,d) \\ z = g(x,d) \end{cases}$$

Dissipativity (global characterization)

Supply function: s(d(t), z(t)), storage function: V(x(t))

$$V(x(t_1)) + \int_{t_1}^{t_2} s(d(t), z(t)) \mathsf{d}t \ge V(x(t_2))$$

Dissipativty (local characterization)

 $\partial_x V(x) f(x,d) \le s(d(t),g(x,w))$ $\dot{V}(x) \le s(d,z)$

▲口▶ ▲□▶ ▲目▶ ▲目▶ 三日 ● ④ ●

Dissipative dynamical systems (Jan Willems, 1972)

$$G : \begin{cases} \dot{x} = f(x, d) \\ z = g(x, d) \end{cases}$$

Strictdissipativity (global characterization)Supply function:s(d(t), z(t)), storage function:V(x(t)) $V(x(t_1)) + \int_{t_1}^{t_2} s(d(t), z(t)) dt - \epsilon^2 \int_{t_1}^{t_2} ||d(t)||^2 dt \ge V(x(t_2))$

Strict dissipativty (local characterization)

 $\dot{V}(x) \le \frac{s(d,z)}{-\epsilon^2} \|d(t)\|^2$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Dissipative dynamical systems

$$G = \frac{d}{z}$$

$$G: \begin{cases} \dot{x} = Ax + Bd \\ z = Cx + Dd \end{cases}$$

$$s(d, z) = -\begin{pmatrix} d \\ z \end{pmatrix}^{\top} \begin{pmatrix} Q & S \\ S^{\top} & R \end{pmatrix} \begin{pmatrix} d \\ z \end{pmatrix}, \quad V(x) = x^{\top} Px$$

$$\underbrace{Strict \ dissipativity} \\ \underbrace{(Ax + Bd)^{\top} Px + x^{\top} P (Ax + Bd)}_{\dot{x}^{\top}} + (\star)^{\top} \begin{pmatrix} Q & S \\ S^{\top} & R \end{pmatrix} \begin{pmatrix} d \\ Cx + Dd \end{pmatrix} < 0$$

$$\underbrace{Strict \ dissipativity} \\ \begin{pmatrix} I & 0 \\ -\frac{A}{Q} & -\frac{B}{Q} \\ 0 & 0 \end{pmatrix}^{\top} \begin{pmatrix} 0 & P & \downarrow & 0 & 0 \\ -\frac{P}{Q} & -\frac{0}{Q} & -\frac{0}{S} \\ 0 & 0 & \downarrow & S^{\top} & R \end{pmatrix} \begin{pmatrix} I & 0 \\ -\frac{A}{Q} & -\frac{B}{Q} & -\frac{0}{Q} \\ 0 & 0 & \downarrow & S^{\top} & R \end{pmatrix} \begin{pmatrix} I & 0 \\ -\frac{A}{Q} & -\frac{B}{Q} & -\frac{0}{Q} \\ 0 & 0 & \downarrow & S^{\top} & R \end{pmatrix} \begin{pmatrix} I & 0 \\ -\frac{A}{Q} & -\frac{B}{Q} & -\frac{0}{Q} \\ 0 & 0 & \downarrow & S^{\top} & R \end{pmatrix} \begin{pmatrix} I & 0 \\ -\frac{A}{Q} & -\frac{B}{Q} & -\frac{0}{Q} \\ 0 & 0 & \downarrow & S^{\top} & R \end{pmatrix} \begin{pmatrix} I & 0 \\ -\frac{A}{Q} & -\frac{B}{Q} & -\frac{0}{Q} \\ 0 & 0 & \downarrow & S^{\top} & R \end{pmatrix}$$

Special cases: passivity, L_2 gain bound

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

Interconnection neutral supply functions

$$\dot{V}_1(x_1) < s_1(v_1, w_1)$$
 for $\operatorname{col}(x_1, v_1, w_1) \neq 0$
 $\dot{V}_2(x_2) < s_2(v_2, w_2)$ for $\operatorname{col}(x_2, v_2, w_2) \neq 0$

Interconnection neutral supply function

The interconnection is *neutral* with respect to supply rates s_1, s_2 if

$$s_1(v_1, w_1) + s_2(v_2, w_2) = 0,$$

for all v_1 , w_1 , v_2 , w_2 such that $v_1 = w_2$, $v_2 = w_1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Interconnection neutral supply rates

Stability proof via neutral supply functions

$$\begin{split} V_1(x_1) &> 0, \quad \dot{V}_1(x_1) < s_1(v_1, w_1) \quad \text{for} \quad \operatorname{col}(x_1, v_1, w_1) \neq 0 \\ V_2(x_2) &> 0, \quad \dot{V}_2(x_2) < s_2(v_2, w_2) \quad \text{for} \quad \operatorname{col}(x_2, v_2, w_2) \neq 0 \end{split}$$

 $s_1(v_1, w_1) + s_2(v_2, w_2) = 0$ for $v_1 = w_2, v_2 = w_1$

Willems, 1972 UWillems, 1972 A Jokić, Nakić, 2016, 2017

Exists additive Lyapunov function

 $V(x) = V_1(x_1) + V_2(x_2)$ is positive definite, $\dot{V}(x)$ is negative definite

Examples: passivity, small gain

Interconnection neutral supply rates

Jokić, Nakić, 2016, 2017

Additive Lyapunov function

 $V(x) = x_1^\top P_1 x_1 + x_2^\top P_2 x_2$ is positive definite, $\dot{V}(x)$ is negative definite

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Graph separation interpretation

(KYP lemma \rightarrow) Separation of graphs

$$\begin{pmatrix} I \\ G_1(s) \end{pmatrix}^* \begin{pmatrix} Q & S \\ S^\top & R \end{pmatrix} \begin{pmatrix} I \\ G_1(s) \end{pmatrix} \prec 0 \quad \text{for all } s \in \mathbb{C}^0 \cup \mathbb{C}^+ \\ \begin{pmatrix} G_2(s) \\ I \end{pmatrix}^* \begin{pmatrix} Q & S \\ S^\top & R \end{pmatrix} \begin{pmatrix} G_2(s) \\ I \end{pmatrix} \succ 0 \quad \text{for all } s \in \mathbb{C}^0 \cup \mathbb{C}^+$$

Jokić, Nakić, 2016, 2017

Additive Lyapunov function

 $V(x) = V_1(x_1) + V_2(x_2)$ is positive definite, $\dot{V}(x)$ is negative definite

Proof (sketch)

Given: There exists an additive Lyapunov function; $P = \text{diag}(P_1, P_2)$.

$$H = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}, \quad G = \begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}$$

where $A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix}, \quad B = \begin{pmatrix} B_1 & 0 \\ 0 & B_2 \end{pmatrix}, \quad C = \begin{pmatrix} C_1 & 0 \\ 0 & C_2 \end{pmatrix}, \quad D = \begin{pmatrix} D_1 & 0 \\ 0 & D_2 \end{pmatrix}$

(日) (四) (日) (日) (日)

Problem: Search for a structured multiplier ("structured separation") $\star - \star$.

Proof (sketch)

Starting point: Full block S-procedure

$$\begin{pmatrix} H \\ I \end{pmatrix}^{\top} \begin{pmatrix} Q & S \\ S^{\top} & R \end{pmatrix} \begin{pmatrix} H \\ I \end{pmatrix} \succeq 0$$

$$\begin{pmatrix} \bullet & P & \bullet & \bullet \\ \bullet & 0 & \bullet & \bullet \\ \bullet & 0 & \bullet \\ \bullet & 0 & \bullet \\ \bullet & 0 & \bullet & \bullet \\ \bullet &$$

Proof: Full multiplier implies existence of a structured multiplier. Proof is constructive.

$$\begin{pmatrix} Q & S \\ S^{\mathsf{T}} & R \end{pmatrix} = \begin{pmatrix} Q_{11} & Q_{12} & S_{11} & S_{12} \\ Q_{12}^{\mathsf{T}} & Q_{22} & S_{21} & S_{22} \\ S_{11}^{\mathsf{T}} & S_{21}^{\mathsf{T}} & R_{12} \\ S_{12}^{\mathsf{T}} & S_{22}^{\mathsf{T}} & R_{12} \\ R_{12}^{\mathsf{T}} & S_{22}^{\mathsf{T}} & R_{22} \end{pmatrix} \implies \exists \begin{pmatrix} \mathcal{Q} & 0 & S & 0 \\ 0 & -\mathcal{R} & 0 & -\mathcal{S} \\ S^{\mathsf{T}} & 0 & \mathcal{R} & 0 \\ 0 & -\mathcal{S} & 0 & -\mathcal{Q} \end{pmatrix}$$

Assumption: Either C_1 and C_2 are full row rank or $D_1 = 0$, $D_2 = 0$.

Interconnection neutral supply rates for open systems

$$\begin{split} \dot{V}_1(x_1) < s_1(v_1, w_1) + s_1^{EX}(d_1, z_1) \quad \text{for} \quad \operatorname{col}(x_1, v_1, w_1) \neq 0 \\ \dot{V}_2(x_2) < s_2(v_2, w_2) + s_2^{EX}(d_2, z_2) \quad \text{for} \quad \operatorname{col}(x_2, v_2, w_2) \neq 0 \end{split}$$

 $s_1(v_1, w_1) + s_2(v_2, w_2) = 0$ for $v_1 = w_2, v_2 = w_1$

Willems, 1972 U 🍴 Jokić, Nakić, 2016, 2017

Dissipativity to external supply functions with additive storage function

$$\dot{V}(x) = \dot{V}_1(x_1) + \dot{V}_2(x_2) < s_1^{EX}(d_1, z_1) + s_2^{EX}(d_2, z_2)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Interconnection neutral supply rates for open systems

$$\underbrace{\begin{array}{c} z_1 \\ \hline \\ d_1 \end{array}} \underbrace{\begin{array}{c} G_1 \\ \hline \\ w_1 \end{array}} \underbrace{\begin{array}{c} v_1 \\ w_2 \end{array}} \underbrace{\begin{array}{c} W_2 \\ \hline \\ w_1 \end{array}} \underbrace{\begin{array}{c} G_2 \\ \hline \\ w_i \end{array}} \underbrace{\begin{array}{c} d_2 \\ \hline \\ z_i \end{array}} \underbrace{\begin{array}{c} G_i : \\ (\begin{matrix} \dot{x}_i \\ w_i \\ z_i \end{matrix}} = \begin{pmatrix} A_i & B_i & E_i \\ C_i & D_i & 0 \\ F_i & K_i & L_i \end{pmatrix} \begin{pmatrix} x_i \\ v_i \\ d_i \end{pmatrix}} \underbrace{\begin{array}{c} x_i \\ v_i \\ d_i \end{pmatrix}} \underbrace{\begin{array}{c} x_i \\ v_i \\ d_i \end{pmatrix}} \underbrace{\begin{array}{c} x_i \\ v_i \\ d_i \end{array}} \underbrace{\begin{array}{c} x_i \\ v_i \\ d_i \end{array}} \underbrace{\begin{array}{c} x_i \\ v_i \\ d_i \end{pmatrix}} \underbrace{\begin{array}{c} x_i \\ v_i \\ d_i \end{array}} \underbrace{\begin{array}{c} x_i \\ v_i \end{array}} \underbrace{\begin{array}{c} x_i \\ v_i \\ d_i \end{array}} \underbrace{\begin{array}{c} x_i \\ v_i \end{array}} \underbrace{\begin{array}{c} x_i \end{array}} \underbrace{\begin{array}{c} x_i \\ v_i \end{array}} \underbrace{\begin{array}{c} x_i \\ v_i \end{array}} \underbrace{\begin{array}{c} x_i \end{array}} \underbrace{\begin{array}{c} x_i \\ v_i \end{array}} \underbrace{\begin{array}{c} x_i \\ v_i \end{array}} \underbrace{\begin{array}{c} x_i \\ v_i \end{array}} \underbrace{\begin{array}{c} x_i \end{array}} \underbrace{\begin{array}{c} x_i \\ v_i \end{array}} \underbrace{\begin{array}{c} x_i \end{array}} \underbrace{\begin{array}{c} x$$

Assumption: Either C_1 and C_2 are full row rank or $D_1 = 0$, $D_2 = 0$.

 $\dot{V}_1(x_1) < s_1(v_1, w_1) + s_1^{EX}(d_1, z_1) \quad \text{for} \quad \operatorname{col}(x_1, v_1, w_1) \neq 0 \\ \dot{V}_2(x_2) < s_2(v_2, w_2) + s_2^{EX}(d_2, z_2) \quad \text{for} \quad \operatorname{col}(x_2, v_2, w_2) \neq 0$

 $s_1(v_1, w_1) + s_2(v_2, w_2) = 0$ for $v_1 = w_2, v_2 = w_1$

Willems, 1972 U 🍴 Alakić, Nakić, 2016, 2017

Dissipativity to external supply functions with additive storage function $\dot{V}(x) = \dot{V}_1(x_1) + \dot{V}_2(x_2) < s_1^{EX}(d_1, z_1) + s_2^{EX}(d_2, z_2)$

Outline

Introduction

Dissipativity, neutral supply functions, separation Dissipativity Interconnection neutral supply functions (2 systems

Dynamical networks

Acyclic networks Structured Lyapunov functions and robustness

Beyond static supply rates (separation) & Synthesis

Architecture, Constraints that de-constrain (protocols) + Examples

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Acyclic dynamical networks

Assumption: Either C_{ij} is full row rank or $D_{ij} = 0$. Note: more general feed-through patterns - "implicitly" not acyclic networks

Additive Lyapunov functions and dissipativity

Statement 1: existence of an **additive Lyapunov function**

Dynamical network admits an additive quadratic Lyapunov function

$$V(x) = \underbrace{x_1^\top P_1 x_1}_{V_1(x_1)} + \dots \underbrace{x_L^\top P_L x_L}_{V_L(x_L)}$$

\uparrow

Statement 2: existence of interconnection neutral supply rates

$$\dot{V}_i(x_i) < \sum_{j \in N_i} s_{ij}(v_{ij}, w_{ij})$$

along trajectories x_i , v_{ij} , w_{ij} satisfying

$$s_{ij}(v_{ij}, w_{ij}) + s_{ji}(v_{ji}, w_{ji}) = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQの

for each (i, j) such that $(G_i, G_j) \in \hat{E}$;

Proof (illustration)

<ロト <回ト < 回ト < 回ト

æ

Statement A

• G strictly dissipative w.r.t. $s(v, w) = s_A(v_A, w_A) + s_B(v_B, w_B)$ with storage $x^{\top} P x$

►
$$s_A(v_A, w_A) + s_B(v_B, w_B) = 0$$
 for all $v_A = w_B, v_B = w_A$

•
$$s_A(0, w_A) \leq 0$$
 for all $w_A \neq 0$

• $s_B(0, w_B) \leq 0$ for all $w_B \neq 0$

$$\blacktriangleright P \succ 0$$

Statement B

- G is stable
- ▶ *G* remains stable if the following interconnection is made:

 $v_A = \alpha w_B$, $v_B = \alpha w_A$

Statement A
$$\implies$$
 Statement B

Proof. Direct application of the full block S-procedure

$$s(v,w) = -\begin{pmatrix} v_A \\ v_B \\ w_A \\ w_B \end{pmatrix}^{\top} \underbrace{\begin{pmatrix} Q & 0 & S & 0 \\ 0 & -R & 0 & -S^{\top} \\ S^{\top} & 0 & R & 0 \\ 0 & -S & 0 & -Q \end{pmatrix}}_{\Pi} \begin{pmatrix} v_A \\ v_B \\ w_A \\ w_B \end{pmatrix}, \quad R \succeq 0, \quad -Q \succeq 0$$

 $\begin{aligned} s_A(v_A, w_A) + s_B(v_B, w_B) &= 0 \text{ for all } v_A = w_B, v_B = w_A, \\ s_A(0, w_A) &\leq 0 \text{ for all } w_A \neq 0, \ s_B(0, w_B) \leq 0 \text{ for all } w_B \neq 0_{\text{P}}, \text{ for all } w_B \neq 0_{\text{P}},$

Proof. Direct application of the full block S-procedure

$$\begin{pmatrix} 0 & \alpha I \\ \alpha I & 0 \\ \overline{I} & 0 \\ 0 & I \end{pmatrix}^{\top} \Pi \begin{pmatrix} 0 & \alpha I \\ \alpha I & 0 \\ \overline{I} & 0 \\ 0 & I \end{pmatrix} = \begin{pmatrix} (1 - \alpha^2) R \\ 0 & (1 - \alpha^2) (-Q) \end{pmatrix} \succeq 0$$

Robustness in dynamical networks

- Assumption: No algebraic loops $(D_{ij} = 0)$
- By construction: In acyclic networks exist interconnection neural supply rates which imply robustness w.r.t. loss of a link
- Networks with cycles: robustness w.r.t. to disconnection of a system (loss of all links which connect a system to the rest of the network)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Outline

Introduction

Dissipativity, neutral supply functions, separation

Interconnection neutral supply functions (2 systems)

Dynamical networks

Acyclic networks Structured Lyapunov functions and robustness

Beyond static supply rates (separation) & Synthesis

Architecture, Constraints that de-constrain (protocols) + Examples

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Beyond <u>static</u> supply rates (static separation)

For all $s \in \mathbb{C}^0 \cup \mathbb{C}^+$:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Note: IQCs, piecewise constant separation (e.g., in vertical layering), QDFs

Synthesis (Distributed control)

 Interactions in the control layer: more variables in interconnection neutral supplies

イロト 不得 トイヨト イヨト

3

Convexification in synthesis: equivalent to LPV control

Outline

Introduction

Dissipativity, neutral supply functions, separation

Interconnection neutral supply functions (2 systems)

Dynamical networks

Acyclic networks Structured Lyapunov functions and robustness

Beyond static supply rates (separation) & Synthesis

Architecture, Constraints that de-constrain (protocols) + Examples

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Motivating example: electrical power system

Motivating example: electrical power system

All happy families are alike; each unhappy family is unhappy in its own way.

・ロト ・日ト ・ヨト

Acknowledgements

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Croatian Science Foundation project no. 9354 Control of Spatially Distributed Systems