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The biggest machine in the world

The biggest (most complex) machine in the world...
(Fair to say:) ...but it didn’t feel like it (“the most complex”) during
design...



The biggest machine in the world

Robustness?
I synchronous machines, inertia

(desirable physical properties)
I conservative engineering

... and fragility
I Blackout 9 November 1965,

USA, Canada (tripping
transmission line). Affected
> 30 mil. people.

I Thailand 1978; Canada 1989;
Brazil 1999 (97 mil. people);
India 2001 (226 mil. people);
USA & Canada 2003; Italy
2003; Germany & France &
Italy & Spain 2006; China 2008;
India 2012 (670 mil. people)



... things are changing...

Number of frequency violations in
Nordic grid (source: ENTSO-E)
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Proofs... certificates of separation
Verifiable characterization of whether two sets are separated → in the
heart of verity of problems.

I Hahn-Banach separation theorem
I hyperplane separation in convex optimization (Lagrange multiplier)

I Separation of subspaces
I Full block S-Procedure (multipliers)

Good Bad Ugly

Bigger picture: multipliers as protocols in architecture of dynamical
networks
Full block S-Procedure in control systems has nice physical interpretation
in terms of dissipativity theory.



Quadratic separation
Statement A (desired property)

For G :=
(
I G2
G1 I

)
inverse G−1 exists and ‖G−1‖ ≤ c

m
Statement B (Quadratic separation)

Exists Π such that
(
I
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Π
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I
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)
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Π
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)
� 0.

Example
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Full block S-Procedure

G

∆

dz

w v z = (∆ ? G)d :=
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Statement A (desired property)
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Full block S-Procedure

G

∆

dz

w v
z = (∆ ? G)d :=


(
w

z

)
=
(
K L

M N

)
︸ ︷︷ ︸

G

(
v

d

)

v = ∆w, ∆ ∈∆

Statement B (multiplier-based condition - separation) v
w
0
0

> Q S 0 0
S> R 0 0
0 0 Qp Sp

0 0 S>p Rp

 v
w
0
0

 ≥ 0 for all ∆ ∈∆
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w
d
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S> R 0 0
0 0 Qp Sp
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 v
w
d
z

 < 0

⇓
Statement A (desired property)



Full block S-Procedure

G

∆

dz
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z = (∆ ? G)d :=
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(
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v = ∆w, ∆ ∈∆

Statement B (multiplier-based condition - separation)
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⇓
Statement A (desired property)



Full block S-Procedure

G

∆

dz

w v

Statement B (multiplier-based condition - separation) ∆
I
0
0

> Q S 0 0
S> R 0 0
0 0 Qp Sp

0 0 S>p Rp

 ∆
I
0
0

 � 0 for all ∆ ∈∆

 I 0
K L
0 I
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> Q S 0 0
S> R 0 0
0 0 Qp Sp

0 0 S>p Rp

 I 0
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0 I

M N

 ≺ 0

⇓
Statement A (desired property)



Full block S-Procedure
Necessity: ∆ compact (Scherer 2001), extension (Jokić, Nakić 2017)

Statement B (multiplier-based condition - separation)

 ∆
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Statement A (desired property)
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G

∆

dz

w v z = (∆ ? G)d :=
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=
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K L

M N

)
︸ ︷︷ ︸

G

(
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d

)

v = ∆w, ∆ ∈∆

Statement B (multiplier-based condition)
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Example: robust stability
Uncertain dynamical system

ẋ = A(δ)x, δ ∈ δ.

Uniform exponential stability condition (single quadratic Lyapunov
function)

∃P � 0 : d

dt
(x>Px) =

(
x
ẋ

)>(0 P
P 0

)(
x
ẋ

)
≤ 0, ẋ = A(δ)x for all δ ∈ δ.

LFT representation of an uncertain system:

G

∆

xẋ

w v

(
w
ẋ

)
=
(
K L
M N

)
︸ ︷︷ ︸

G

(
v
x

)

v = ∆w, ∆ ∈∆



Example: robust stability

G

∆

xẋ

w v

(
w
ẋ

)
=
(
K L
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)
︸ ︷︷ ︸

G

(
v
x

)

v = ∆w, ∆ ∈∆

Statement A (desired property)(
x
ẋ

)>(0 P
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x
ẋ

)
≤ 0 for all ∆ ∈∆.

Statement B (multiplier-based condition)
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Dissipative dynamical systems (Jan Willems, 1972)

G
d

z G :
{
ẋ = f(x, d)
z = g(x, d)

Dissipativity (global characterization)

Supply function: s(d(t), z(t)), storage function: V (x(t))

V (x(t1)) +
∫ t2

t1

s(d(t), z(t))dt ≥ V (x(t2))

Dissipativty (local characterization)

∂xV (x)f(x, d) ≤ s(d(t), g(x,w))

V̇ (x) ≤ s(d, z)



Dissipative dynamical systems (Jan Willems, 1972)

G
d

z G :
{
ẋ = f(x, d)
z = g(x, d)

Strict dissipativity (global characterization)

Supply function: s(d(t), z(t)), storage function: V (x(t))

V (x(t1)) +
∫ t2

t1

s(d(t), z(t))dt− ε2
∫ t2

t1

‖d(t)‖2dt ≥ V (x(t2))

Strict dissipativty (local characterization)

V̇ (x) ≤ s(d, z)− ε2‖d(t)‖2



Dissipative dynamical systems

G
d

z G :
{
ẋ = Ax+Bd

z = Cx+Dd

s(d, z) = −
(
d
z

)>(
Q S
S> R

)(
d
z

)
, V (x) = x>Px

Strict dissipativity

(Ax+Bd)>︸ ︷︷ ︸
ẋ>

Px+ x>P (Ax+Bd)︸ ︷︷ ︸
ẋ

+
(
?
)>( Q S

S> R

)(
d

Cx+Dd

)
< 0

Strict dissipativity
I 0
A B
0 I
C D


>

0 P 0 0
P 0 0 0
0 0 Q S
0 0 S> R




I 0
A B
0 I
C D

 ≺ 0

Special cases: passivity, L2 gain bound



Interconnection neutral supply functions

G1

v1

w1

w2

v2

G2

V̇1(x1) < s1(v1, w1) for col(x1, v1, w1) 6= 0
V̇2(x2) < s2(v2, w2) for col(x2, v2, w2) 6= 0

Interconnection neutral supply function
The interconnection is neutral with respect to supply rates s1, s2 if

s1(v1, w1) + s2(v2, w2) = 0,

for all v1, w1, v2, w2 such that v1 = w2, v2 = w1.



Interconnection neutral supply rates

G1

v1

w1

w2

v2

G2

Stability proof via neutral supply functions

V1(x1) > 0, V̇1(x1) < s1(v1, w1) for col(x1, v1, w1) 6= 0
V2(x2) > 0, V̇2(x2) < s2(v2, w2) for col(x2, v2, w2) 6= 0

s1(v1, w1) + s2(v2, w2) = 0 for v1 = w2, v2 = w1

Willems, 1972 ⇓Willems, 1972 ⇓ ⇑ Jokić, Nakić, 2016, 2017

Exists additive Lyapunov function

V (x) = V1(x1) + V2(x2) is positive definite, V̇ (x) is negative definite

Examples: passivity, small gain



Interconnection neutral supply rates

G1

v1

w1

w2

v2
G2

(
?
)> 0 P1 0 0

P1 0 0 0
0 0 Q S
0 0 S> R

 I 0
A1 B1
0 I

C1 D1

 ≺ 0,

(
?
)> 0 P2 0 0

P2 0 0 0
0 0 −R −S>

0 0 −S −Q

 I 0
A2 B2
0 I

C2 D2

 ≺ 0,

P1 � 0, P2 � 0

m Jokić, Nakić, 2016, 2017

Additive Lyapunov function

V (x) = x>1 P1x1 + x>2 P2x2 is positive definite, V̇ (x) is negative definite



Graph separation interpretation

G1

v1

w1

w2

v2

G2

(KYP lemma →) Separation of graphs

(
I

G1(s)

)∗(
Q S

S> R

)(
I

G1(s)

)
≺ 0 for all s ∈ C0 ∪ C+

(
G2(s)
I

)∗(
Q S

S> R

)(
G2(s)
I

)
� 0 for all s ∈ C0 ∪ C+

m Jokić, Nakić, 2016, 2017

Additive Lyapunov function

V (x) = V1(x1) + V2(x2) is positive definite, V̇ (x) is negative definite



Proof (sketch)

G2

G1
? ?(

G1 0
0 G2

)
(

0 I
I 0

)

Given: There exists an additive Lyapunov function; P = diag(P1, P2).

H =
(

0 I
I 0

)
, G =

[
A B

C D

]
where A =

(
A1 0
0 A2

)
, B =

(
B1 0
0 B2

)
, C =

(
C1 0
0 C2

)
, D =

(
D1 0
0 D2

)

Problem: Search for a structured multiplier (“structured separation”)
?− ?.



Proof (sketch)

? ?(
G1 0
0 G2

)
(

0 I
I 0

) Starting point: Full block S-procedure(
H
I

)>(
Q S

S> R

)(
H
I

)
� 0

(
?
)> 0 P 0 0

P 0 0 0
0 0 Q S

0 0 S> R


 I 0

A B

0 I
C D

 ≺ 0.

.

Proof: Full multiplier implies existence of a structured
multiplier. Proof is constructive.

(
Q S

S> R

)
=

 Q11 Q12 S11 S12
Q>12 Q22 S21 S22

S>11 S>21 R11 R12
S>12 S>22 R>12 R22

 =⇒ ∃

 Q 0 S 0
0 −R 0 −S>

S> 0 R 0
0 −S 0 −Q


Assumption: Either C1 and C2 are full row rank or D1 = 0, D2 = 0.



Interconnection neutral supply rates for open systems

z1

d1

G1

v1

w1

w2

v2

G2

d2

z2

V̇1(x1) < s1(v1, w1) + sEX
1 (d1, z1) for col(x1, v1, w1) 6= 0

V̇2(x2) < s2(v2, w2) + sEX
2 (d2, z2) for col(x2, v2, w2) 6= 0

s1(v1, w1) + s2(v2, w2) = 0 for v1 = w2, v2 = w1

Willems, 1972 ⇓ ⇑ Jokić, Nakić, 2016, 2017

Dissipativity to external supply functions with additive storage function

V̇ (x) = V̇1(x1) + V̇2(x2) < sEX
1 (d1, z1) + sEX

2 (d2, z2)



Interconnection neutral supply rates for open systems

z1

d1

G1 v1

w1

w2

v2

G2 d2

z2

Gi :

(
ẋi

wi

zi

)
=

(
Ai Bi Ei

Ci Di 0
Fi Ki Li

)(
xi

vi

di

)

Assumption: Either C1 and C2 are full row rank or D1 = 0, D2 = 0.

V̇1(x1) < s1(v1, w1) + sEX
1 (d1, z1) for col(x1, v1, w1) 6= 0

V̇2(x2) < s2(v2, w2) + sEX
2 (d2, z2) for col(x2, v2, w2) 6= 0

s1(v1, w1) + s2(v2, w2) = 0 for v1 = w2, v2 = w1

Willems, 1972 ⇓ ⇑ Jokić, Nakić, 2016, 2017

Dissipativity to external supply functions with additive storage function

V̇ (x) = V̇1(x1) + V̇2(x2) < sEX
1 (d1, z1) + sEX

2 (d2, z2)
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Acyclic dynamical networks

G1 G2 G3

G4

G1 G2 G3

G4

G1 v12

w12

w21

v21

G2

Gi :


ẋi

wiN1

wiN2
...

wiNr(i)

 =


Ai BiN1 BiN2 . . . BiNk

CiN1 DiN1 0 . . . 0
CiN2 0 DiN2 . . . 0
...

...
. . .

... 0
CiNk 0 0 . . . DiNr(i)




xi

viN1

viN2
...

viNr(i)


Assumption: Either Cij is full row rank or Dij = 0.
Note: more general feed-through patterns - “implicitly” not acyclic networks



Additive Lyapunov functions and dissipativity
Statement 1: existence of an additive Lyapunov function
Dynamical network admits an additive quadratic Lyapunov function

V (x) = x>1 P1x1︸ ︷︷ ︸
V1(x1)

+ . . . x>LPLxL︸ ︷︷ ︸
VL(xL)

m

Statement 2: existence of interconnection neutral supply rates

V̇i(xi) <
∑

j∈Ni

sij(vij , wij)

along trajectories xi, vij , wij satisfying

sij(vij , wij) + sji(vji, wji) = 0

for each (i, j) such that (Gi, Gj) ∈ Ê;



Proof (illustration)

G1 G2 G3

G4 GA

s1A

sA1
G2 G3

G4

GBs1B

sB1

s4B sB4

G2 G3
s12

s21

s23

s32

s42 s24



Robustness

αI

αI
G vA

wA

wB

vB

Statement A
I G strictly dissipative w.r.t. s(v, w) = sA(vA, wA) + sB(vB , wB) with

storage x>Px
I sA(vA, wA) + sB(vB , wB) = 0 for all vA = wB , vB = wA

I sA(0, wA) ≤ 0 for all wA 6= 0
I sB(0, wB) ≤ 0 for all wB 6= 0
I P � 0



Robustness

αI

αI
G vA

wA

wB

vB

Statement B
I G is stable
I G remains stable if the following interconnection is made:
vA = αwB , vB = αwA

Statement A =⇒ Statement B



Robustness

αI

αI
G vA

wA

wB

vB

Proof. Direct application of the full block S-procedure

s(v, w) = −

vA

vB

wA

wB


> Q 0 S 0

0 −R 0 −S>

S> 0 R 0
0 −S 0 −Q


︸ ︷︷ ︸

Π

vA

vB

wA

wB

 , R � 0, −Q � 0

sA(vA, wA) + sB(vB , wB) = 0 for all vA = wB , vB = wA,
sA(0, wA) ≤ 0 for all wA 6= 0, sB(0, wB) ≤ 0 for all wB 6= 0



Robustness

αI

αI
G vA

wA

wB

vB

Proof. Direct application of the full block S-procedure

 0 αI
αI 0
I 0
0 I


>

Π

 0 αI
αI 0
I 0
0 I

 =
(

(1− α2)R
0 (1− α2)(−Q)

)
� 0



Robustness in dynamical networks
I Assumption: No algebraic loops (Dij = 0)
I By construction: In acyclic networks exist interconnection neural

supply rates which imply robustness w.r.t. loss of a link
I Networks with cycles: robustness w.r.t. to disconnection of a system

(loss of all links which connect a system to the rest of the network)
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Beyond static supply rates (static separation)

For all s ∈ C0 ∪ C+:

(
I

G1(s)

)∗
Π
(

I
G1(s)

)
� 0(

G2(s)
I

)∗
Π
(
G2(s)
I

)
≺ 0

(
I

G1(s)

)∗
Ψ(s)∗ΠΨ(s)︸ ︷︷ ︸

Π(s)

(
I

G1(s)

)
� 0

(
G2(s)
I

)∗
Ψ(s)∗ΠΨ(s)︸ ︷︷ ︸

Π(s)

(
G2(s)
I

)
≺ 0

Note: IQCs, piecewise constant separation (e.g., in vertical layering), QDFs



Synthesis (Distributed control)

G1

v1

w1

w2

v2

G2

K1

vK1

wK1

wK2

vK2

K2

I Interactions in the control layer: more variables in interconnection
neutral supplies

I Convexification in synthesis: equivalent to LPV control
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Motivating example: electrical power system



Motivating example: electrical power system



Internet

TCP/IP

Power sys.

50Hz

Dyn.

Π

Econ.

λ

Layered architecture

SlowFast

Economy

e

Dyn. net

Π ?

Good Π Bad Π,Π(s) Ugly Π(s)

Domain specific knowledge!
Hiding local complexity behind interface
No global model, confidentiality
Trade offs: roustness-efficiency-scalability

[John Doyle]



All happy families are alike;
each unhappy family is unhappy in its own way.
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