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The problem framework
The constrained minimisation problem

P min{Jw: y(I)eB:G},

where:

— J is a given cost functional
—yT is a given target

— y the solution of

@ {;ty(t) + Ay(t) = Biu(t)  fort € (0,T)

y(0) = 0. @

H1 The functional J is strictly convex, coercive and lower-semicontinuous.

H2 The unbounded linear operator A : H — H is positive semidefinite,
selfadjoint with dense domain D(A) and compact resolvent.

H3 The operator B; belongs to £ (U, H) for each time ¢t € (0,T); moreover
the pair (A, By) is approximately controllable in time 7.

U, H - real Hilbert space
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The main example

Heat equation:

Lo(t) — Ay(t) = Lou(t) in Q x (0,7)

;Et) =0 on 90 x (0,T) (2)
y(0) =0 in Q.

The system (2) is not exactly controllable.

For any open subset w of positive measure system (2) is approximately
controllable in any time T > 0.

The goal: among all the eligible controls to detect one minimising given cost
functional.



Existence of the solution

Unconstrained problem:
4 =arg min J(u). (3)
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It admits the unique solution @ (due to assumptions on J).

Theorem

The constrained problem (P) admits a unique solution that we denote by 1.

If |§(T) — y*|| < e, then the optimal control coincides with the solution of the
unconstrained problem, i.e. 4 = 4.

Otherwise, the optimal final state verifies ||§ (T') — y” ||x = ¢ (i.e.: §(T) lies
on 9B: (y")).

In the sequel we suppose that ¢ < ||H(T) — y™|.



Characterisation of the solution by the dual problem
We introduce the Fenchel conjugate J* of the functional J:

J (W)= sup { (w,u)ru—J(u)} foru* € Liy.
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Theorem [Generalized HUM]

Let g € H be a reachable state.
Then

ﬂeargngg{.](u): Tu=791}. (4)
is of the form 4 = VJ* (—=T*@"), where

" earg min { T(-T"0") + @ ¢ )n }- 5)
ot EH

T: L%’u — H is the operator that takes the distributed control and gives the
corresponding final state



Characterisation of the solution by the dual problem

It is enough to restrict minimisation problem (P) to controls of form
u=VJ"(=T"p").
For such u
J(u) = F(o"),
where

F") == [V (-T°6"), T ), + 7 (-T°6")] . (6)

Theorem

The solution of problem (P) is
a=vJ (-T°97),

where ¢T is a solution of

min { FT) (@) =97l =e. }. (7)




Quadratic cost-functional

1
J(w) = 3ICu - dl, (8)
C' — a linear bounded operator from LQTYM to a generic Hilbert space X
We suppose that C' is uniformly elliptic:

ICulle > Al gz, .- (9)

It implies that it exists (C*C)™".

Set C = (01,02) and d = (dl,dQ)Z
(Cru) (1) = Va0 u(t) Lo; (10)
(C20) (8) = VBT vu(t) Lo (1)
di(t) = 0; (12)
d2(t) = V/B(t) y*(¢) Lur (13)
Then
T =3 [ o) JuOlia dt + 5 [ 80 ln(® ~ v 2 dt.




Optimal control constructive characterisation

We have shown that the solution is of the form
a=vr (-T°¢"), (14)

where ¢7 is the solution of minimisation problem (7).
For quadratic functional J = 1[|Cu — d||3 the formula (14) becomes

i =—-GB* " g 1 e, (15)

where G = (C*C)™", while T is the minimiser of the problem (7).

We have to determine ¢7.



Optimal control constructive characterisation

For J = 1||Cu — d||3 we have

¢ = arg mln { F(p™)} = arg mm { (Mr ng,cpT)H}, (16)
pTeH eTeH

where M, : H — H is given by:

w (7)< [ s {[cror (Bl ) e

In addition
y(T) = —Mrp" +§(T).

Consequently, the original problem (P) is equivalent to

(P) min § (Mr ¢", 0 )u: | Mr " —§(T)+y"llu=¢ . (18)
et eH N——
y(T)

— a standard constrained optimisation problem.



Optimal control constructive characterisation
Introduce the Lagrange functional

(o) = Mz "0+ (1M1 & = §(T) +y" I3 - 7).

The optimality condition gives

(Mr + M;3) ¢T + 2aM;7 (MT &7 — §(T) + yT) =0, (19)
implying
o7 = [Mr (14 adir) | [z (37) — "))
Ry

The explicit expression
" = Ry [ (9(T) - )]

of the minimisator in terms of the given data and the unknown scalar f.

Putting it in the constraint

1Mz @7 = G(T) +y" |l = (20)
we get

e = [ Raney (3(T) = ") I (21)



Optimal control constructive characterisation

Let g : R — R™ be given by

9 (1) = 1Rpaer (5(1) =" ) I

The problem is reduced to a scalar (nonlinear) equation

g () =€

The equation is well defined for every e < ||§(T) — 7.

(22)
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The constructive algorithm

e Find the real value i (optimal Lagrange multiplier) as the unique solution

to
g(p) =%

for g given by (22).
e Find the vector ¢ € H (optimal dual final-state), as

¢" = Rany [ﬂ (Z?(T) - yT)} g
for Ryun, = (I+/,LMT)_1 and My given by (17).
e Find the function ¢ (¢) (optimal dual variable), given by
gﬁ(t) _ e(th).A* @T'
e The optimal control is given by
i =—-GB" ¢+ GC™d,
where G = (C*C) ™.




Spectral decomposition

Denote:

(¥n),,en — an orthonormal basis of H, consisting of eigenfunction of A

(An)nen — a sequence of corresponding (nonnegative) eigenvalues A,
lim, A\, = +o0.

yn — the n-th Fourier coefficient of y € H.

The operator Mt determined by

My (SDT) _ /T S TAR { [(C*C)_l (B*e(.,T)A*SDT)] (S)} ds,

0
can be presented by an infinite matrix with entries

(M), = /OT<(C*C)_1 [B*e*ﬂ‘*”wj] (s), B*emé‘*T%/@H ds,  (23)

. Truncation - required for practical implementation of the algo



Truncation and error estimates

For ¢ € H define its truncation
N
N
oY =05 s,
j=1
and similarly MY : RY - RV

(M%V) = Mripi -y, 4,5 =1.N.

)

Define also

RY(u) = (T4 ubd)

and
g" () = IRN[5(T) = y" 1V |7en- (24)

gY preserves the "good” properties of g.



Truncation and error estimates

The equation
N 2
(n)=¢
y 1V |-

g
is well posed for every ¢ < ||[§(T) —
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The equation
N 2
(n)=¢
y 1V |-

g
is well posed for every ¢ < ||[§(T) —

[4(T) — o7 |3,

iy 1N TN |2
ey =187 (T) —v %




The algo -truncated version

e Approximation /fN of the optimal Lagrange multiplier as the unique

solution to
N~ 2
g () =¢€%

for g™ given by (24).
e the approximation of the optimal dual final state

(67)" =¥ RY ™) [y - "]

(nonlinear effects!).

e the approximation of the optimal dual variable
&N (1) = e(th).A*@T'
e the approximation of the optimal control
N = —GB "N + GCrd”,
where G = (C*C)™".
Much boring work to get what is expected

ﬁ*’N

N

~1U



Estimates

The problem is reduced to determining
-1
RY(u) = (14 pbiz’)
i.e. to the entries of the matrix M~ :

(MT)]-k = /OT < (C*C)*l [B*ekj(<7T)¢j] (s), B*ekk(s—T)wk>H ds.

delicate part




Control cost

The problem is easy if there is no trajectory regulation:

_ ;zk:/:ak(t) [utt) — )] at

in which case

Clu Z AVAe) wk;
Clearly, C{ = C4 and

[CICru] () =) an(t) [u(®)], ¥r.

k

(25)

(26)



Control cost- example

Put ap = €.

T
TSNS § Al U R Ca B PR 3
where:

» equation: L ==, T =1 and

Oy(z,t) — Ouay(z,t) = u(z,t)  Zu.(x) € (0,L), t €[0,T]
y(0,t) = y(L,t) =0 t 0,7
y(m,O):O .TG[O,L],

with we = (§, §) U (5, %F);



Exmple - Control cost

08
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04t

02f ‘

> final target (blue):
L

L
T - 1l-
g @) =5~z =5

We used ty () = /2 - sin("%), A, = n® and N = 230,
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Trajectory regulation

u

Imn{ATa@MuQNQdr+[fﬁumy@)—yﬂ2dt \wav—yﬂuaqu6}7

C = (Cy,C2) where

[Cru] (1) = Vet u(t); (27)
[Cau] () = v/ B()yu(t); - (28)

We know C* (a1, az2) = Cia1 + C3a2 and we have to find
G=(CiC1+C5C) ", (29)

More precisely

G BNy,



Trajectory regulation

T s
(CIC1 + C5C2) u = at)u(t) + / / B(s)B* e =94 a4 By (q)dqds
t Jo

What is its inverse?
Try the solution of

(C1CL + C3Co) u(t) = BT e =Ty,
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T s
(CIC1 + C5C2) u = at)u(t) + / / B(s)B* e =94 a4 By (q)dqds
¢ Jo

What is its inverse?
Try the solution of

(C1CL + C3Co) u(t) = BT e =Ty,

in the form

u = B v;(t),
for some unknown function v;.
It is sufficient that

T s X
a(t)v; (£)y; + +/t /0 /3(8)6(’5*5)‘4 e(qfs)ABB*wjvj(q) _ e(th)Aq/;j

Manipulation and double derivation with respect to time

) alt)y B . 2, G(t)  amBE) B ,
(vj(t)+[2a(t)_ﬁ(t)} Uj(t)+|:—)\j+a7(t)—m+/\ﬂ(t)] v]-(t)>1/)]
B(t)

. —tA\; _tA *oly .
a—(t)vj(t)e e BB*Y; = 0.



Trajectory regulation

Assume BB* diagonalisable (strong assumption).

. alty B .
5 )+ [25 - g 0
IO GL DN TONEN-10) B
+{A’+a(t) a(t)ﬁ(t)+/\6(t) Baw| ™=

Second order ODE for v;.

We solve the problem for a, 8:
» constant functions
» exponential functions
> characteristic funstions of a time interval

We obtain the missing puzzle of the algo - entries of the matrix Mrp:

(Mr),, = /Ot <G [B*e*ﬂ'*”wj} (s),B*e*k(S*T)wQH ds.

B*apjvj(t)




Example - Trajectory regulation

T T 2
mm{“/ uoft a5 [ fuo = o uy<T>—yTHLz(omSE}’
0 0

u

where:
> equation: the same as before, but with w. = ;

> final target (T = 1):

y7(z) = 3exp <_15 (x _ ‘Zr>2> ;

> trajectory target: for t; = 27,

d T2
y!(z,1) = Bexp (—15 (== 1) ) Tioo) (0):

We used N = 25.
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Figure: Red: yT'. Blue: y?.

y? is targeted just during ¢ € [0, 2].



Figure: For a = 0.01 and 2 = 0.001 g(0), the optimal control (Left) and the optimal
state (Right). Red line: yT. Blue line: y¢.
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Figure: For a = 0.001 and €2 = 0.001 g(0), the optimal control (Left) and the
optimal state (Right). Red line: yT. Blue line: y<.



=[0.5, 0.99999 ] - g(0).



Conclusion

The new approach:

— exploring spectral representation of the solution by eigenfunctions of A,

— an explicit expression of the optimal constrained control in terms of the
given problem data.

— the numerical issues are reduced to finding the unique root of a scalar
function.

— same formula applies indpendetnly of the dimension.
No curse of dimensionality.

Price to pay:
— knowledge of eigenfunctions,
If the problem has to be considered many times for different data, but the
same operator, this can be done offline.
— BB™ diagonalisable

This is not inevitable asumption, just the computations turn to be more
delicate to handle without numerical tools.
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Thanks for your attention!
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