Distributed optimal control of parabolic equations by spectral decomposition

Martin Lazar
University of Dubrovnik

Bilbao, 2017

Joint work with: C. Molinari,

The problem framework

The constrained minimisation problem

$$
(\mathcal{P}) \quad \min _{u}\left\{J(u): \quad y(T) \in \overline{B_{\varepsilon}\left(y^{T}\right)}\right\}
$$

where:

- J is a given cost functional
$-y^{T}$ is a given target
$-y$ the solution of

$$
(\mathcal{E}) \quad\left\{\begin{array}{l}
\frac{d}{d t} y(t)+\mathcal{A} y(t)=\mathcal{B}_{t} u(t) \quad \text { for } t \in(0, T) \tag{1}\\
y(0)=0
\end{array}\right.
$$

H1 The functional J is strictly convex, coercive and lower-semicontinuous.
H2 The unbounded linear operator $\mathcal{A}: \mathcal{H} \rightarrow \mathcal{H}$ is positive semidefinite, selfadjoint with dense domain $D(\mathcal{A})$ and compact resolvent.
H3 The operator \mathcal{B}_{t} belongs to $\mathcal{L}(\mathcal{U}, \mathcal{H})$ for each time $t \in(0, T)$; moreover the pair $\left(A, B_{t}\right)$ is approximately controllable in time T.
U, H - real Hilbert space

The problem framework

The constrained minimisation problem

$$
(\mathcal{P}) \quad \min _{u}\left\{J(u): \quad y(T) \in \overline{B_{\varepsilon}\left(y^{T}\right)}\right\}
$$

where:

- J is a given cost functional
$-y^{T}$ is a given target
$-y$ the solution of

$$
(\mathcal{E}) \quad\left\{\begin{array}{l}
\frac{d}{d t} y(t)+\mathcal{A} y(t)=\mathcal{B}_{t} u(t) \quad \text { for } t \in(0, T) \tag{1}\\
y(0)=0
\end{array}\right.
$$

H1 The functional J is strictly convex, coercive and lower-semicontinuous.
H2 The unbounded linear operator $\mathcal{A}: \mathcal{H} \rightarrow \mathcal{H}$ is positive semidefinite, selfadjoint with dense domain $D(\mathcal{A})$ and compact resolvent.
H3 The operator \mathcal{B}_{t} belongs to $\mathcal{L}(\mathcal{U}, \mathcal{H})$ for each time $t \in(0, T)$; moreover the pair $\left(A, B_{t}\right)$ is approximately controllable in time T.
U, H - real Hilbert space

> 國 M. Lazar, C. Molinari and J. Peypouquet: Optimal control of parabolic equations by spectral decomposition, Optimization, 23 pp, (2017)

The main example

Heat equation:

$$
\begin{cases}\frac{d}{d t} y(t)-\Delta y(t)=\mathbb{1}_{\omega} u(t) & \text { in } \Omega \times(0, T) \tag{2}\\ y(t)=0 & \text { on } \partial \Omega \times(0, T) \\ y(0)=0 & \text { in } \Omega .\end{cases}
$$

The system (2) is not exactly controllable.
For any open subset ω of positive measure system (2) is approximately controllable in any time $T>0$.
The goal: among all the eligible controls to detect one minimising given cost functional.

Existence of the solution

Unconstrained problem:

$$
\begin{equation*}
\tilde{u}=\arg \min _{u \in L_{T, \mathcal{U}}^{2}} J(u) \tag{3}
\end{equation*}
$$

It admits the unique solution \tilde{u} (due to assumptions on J).

Theorem

The constrained problem (\mathcal{P}) admits a unique solution that we denote by \hat{u}.
If $\left\|\tilde{y}(T)-y^{T}\right\| \leq \varepsilon$, then the optimal control coincides with the solution of the unconstrained problem, i.e. $\hat{u}=\tilde{u}$.
Otherwise, the optimal final state verifies $\left\|\hat{y}(T)-y^{T}\right\|_{\mathcal{H}}=\varepsilon$ (i.e.: $\hat{y}(T)$ lies on $\partial B_{\varepsilon}\left(y^{T}\right)$).

In the sequel we suppose that $\varepsilon<\left\|\tilde{y}(T)-y^{T}\right\|$.

Characterisation of the solution by the dual problem

We introduce the Fenchel conjugate J^{\star} of the functional J :

$$
J^{\star}\left(u^{\star}\right)=\sup _{u \in L_{T, \mathcal{U}}^{2}}\left\{\left\langle u^{\star}, u\right\rangle_{T, \mathcal{U}}-J(u)\right\} \quad \text { for } u^{\star} \in L_{T, \mathcal{U}}^{2}
$$

Theorem [Generalized HUM]

Let $\bar{y} \in \mathcal{H}$ be a reachable state.
Then

$$
\begin{equation*}
\bar{u} \in \arg \min _{u \in \mathcal{U}}\{J(u): \mathcal{T} u=\bar{y}\} \tag{4}
\end{equation*}
$$

is of the form $\bar{u}=\nabla J^{\star}\left(-\mathcal{T}^{*} \bar{\varphi}^{T}\right)$, where

$$
\begin{equation*}
\bar{\varphi}^{T} \in \arg \min _{\varphi^{T} \in \mathcal{H}}\left\{J^{\star}\left(-\mathcal{T}^{*} \varphi^{T}\right)+\left\langle\bar{y}, \varphi^{T}\right\rangle_{\mathcal{H}}\right\} \tag{5}
\end{equation*}
$$

$\mathcal{T}: L_{T, \mathcal{U}}^{2} \rightarrow \mathcal{H}$ is the operator that takes the distributed control and gives the corresponding final state

$$
\begin{gathered}
\mathcal{T} u=y(T) \\
\mathcal{T}^{*} \varphi^{T}=\mathcal{B}^{*} \varphi
\end{gathered}
$$

Characterisation of the solution by the dual problem

It is enough to restrict minimisation problem (\mathcal{P}) to controls of form $u=\nabla J^{\star}\left(-\mathcal{T}^{*} \varphi^{T}\right)$.
For such u

$$
J(u)=F\left(\varphi^{T}\right)
$$

where

$$
\begin{equation*}
F\left(\varphi^{T}\right)=-\left[\left\langle\nabla J^{\star}\left(-\mathcal{T}^{*} \varphi^{T}\right), \mathcal{T}^{*} \varphi^{T}\right\rangle_{L_{T, \mathcal{U}}^{2}}+J^{\star}\left(-\mathcal{T}^{*} \varphi^{T}\right)\right] \tag{6}
\end{equation*}
$$

Theorem

The solution of problem (\mathcal{P}) is

$$
\hat{u}=\nabla J^{\star}\left(-\mathcal{T}^{*} \hat{\varphi}^{T}\right)
$$

where $\hat{\varphi}^{T}$ is a solution of

$$
\begin{equation*}
\min _{\varphi^{T} \in \mathcal{H}}\left\{F\left(\varphi^{T}\right):\left\|y(T)-y^{T}\right\|_{\mathcal{H}}=\varepsilon\right. \tag{7}
\end{equation*}
$$

Quadratic cost-functional

$$
\begin{equation*}
J(u)=\frac{1}{2}\|C u-d\|_{\mathcal{X}}^{2}, \tag{8}
\end{equation*}
$$

C - a linear bounded operator from $L_{T, \mathcal{U}}^{2}$ to a generic Hilbert space \mathcal{X} We suppose that C is uniformly elliptic:

$$
\begin{equation*}
\|C u\|_{\mathcal{X}} \geq \gamma\|u\|_{L_{T, u}^{2}} . \tag{9}
\end{equation*}
$$

It implies that it exists $\left(C^{*} C\right)^{-1}$.

EXAMPLE

Set $C=\left(C_{1}, C_{2}\right)$ and $d=\left(d_{1}, d_{2}\right)$:

$$
\begin{align*}
& \left(C_{1} u\right)(t)=\sqrt{\alpha(t)} u(t) \mathbb{1}_{\omega} ; \tag{10}\\
& \left(C_{2} u\right)(t)=\sqrt{\beta(t)} y_{u}(t) \mathbb{1}_{\omega^{\prime}} ; \tag{11}\\
& d_{1}(t)=0 ; \tag{12}\\
& d_{2}(t)=\sqrt{\beta(t)} y^{d}(t) \mathbb{1}_{\omega^{\prime}} \tag{13}
\end{align*}
$$

Then

$$
J(u)=\frac{1}{2} \int_{0}^{T} \alpha(t)\|u(t)\|_{L^{2}(\omega)}^{2} d t+\frac{1}{2} \int_{0}^{T} \beta(t)\left\|y_{u}(t)-y^{d}(t)\right\|_{L^{2}\left(\omega^{\prime}\right)}^{2} d t .
$$

Optimal control constructive characterisation

We have shown that the solution is of the form

$$
\begin{equation*}
\hat{u}=\nabla J^{\star}\left(-\mathcal{T}^{*} \hat{\varphi}^{T}\right) \tag{14}
\end{equation*}
$$

where $\hat{\varphi}^{T}$ is the solution of minimisation problem (7). For quadratic functional $J=\frac{1}{2}\|C u-d\|_{\mathcal{X}}^{2}$ the formula (14) becomes

$$
\begin{equation*}
\hat{u}=-G \mathcal{B}^{*} e^{(t-T) \mathcal{A}^{*}} \hat{\varphi}^{T}+G C^{*} d \tag{15}
\end{equation*}
$$

where $G=\left(C^{*} C\right)^{-1}$, while $\hat{\varphi^{T}}$ is the minimiser of the problem (7).
We have to determine $\hat{\varphi}^{T}$.

Optimal control constructive characterisation

For $J=\frac{1}{2}\|C u-d\|_{\mathcal{X}}^{2}$ we have

$$
\begin{equation*}
\hat{\varphi}^{T}=\arg \min _{\varphi^{T} \in \mathcal{H}}\left\{F\left(\varphi^{T}\right)\right\}=\arg \min _{\varphi^{T} \in \mathcal{H}}\left\{\left\langle M_{T} \varphi^{T}, \varphi^{T}\right\rangle_{\mathcal{H}}\right\}, \tag{16}
\end{equation*}
$$

where $M_{t}: \mathcal{H} \rightarrow \mathcal{H}$ is given by:

$$
\begin{equation*}
M_{t}\left(\varphi^{T}\right)=\int_{0}^{t} e^{(s-t) \mathcal{A}} \mathcal{B}\left\{\left[\left(C^{*} C\right)^{-1}\left(\mathcal{B}^{*} e^{(\cdot-T) \mathcal{A}^{*}} \varphi^{T}\right)\right](s)\right\} d s \tag{17}
\end{equation*}
$$

In addition

$$
y(T)=-M_{T} \varphi^{T}+\tilde{y}(T) .
$$

Consequently, the original problem (\mathcal{P}) is equivalent to

$$
\begin{equation*}
\left(\mathcal{P}^{\prime}\right) \quad \min _{\varphi^{T} \in \mathcal{H}}\{\left\langle M_{T} \varphi^{T}, \varphi^{T}\right\rangle_{\mathcal{H}}:\|\underbrace{\| M_{T} \varphi^{T}-\tilde{y}(T)}_{y(T)}+y^{T}\|_{\mathcal{H}}=\varepsilon\} . \tag{18}
\end{equation*}
$$

- a standard constrained optimisation problem.

Optimal control constructive characterisation

Introduce the Lagrange functional

$$
\mathcal{L}\left(\varphi^{T}, \mu\right)=\left\langle M_{T} \varphi^{T}, \varphi^{T}\right\rangle_{\mathcal{H}}+\mu\left(\left\|M_{T} \varphi^{T}-\tilde{y}(T)+y^{T}\right\|_{\mathcal{H}}^{2}-\varepsilon^{2}\right) .
$$

The optimality condition gives

$$
\begin{equation*}
\left(M_{T}+M_{T}^{*}\right) \hat{\varphi}^{T}+2 \hat{\mu} M_{T}^{*}\left(M_{T} \hat{\varphi}^{T}-\tilde{y}(T)+y^{T}\right)=0 \tag{19}
\end{equation*}
$$

implying

$$
\hat{\varphi}^{T}=[M_{T} \underbrace{\left.\left(I+\hat{\mu} M_{T}\right)\right]^{-1}}_{R_{\hat{\mu} M_{T}}}\left[\hat{\mu} M_{T}\left(\tilde{y}(T)-y^{T}\right)\right] .
$$

The explicit expression

$$
\hat{\varphi}^{T}=R_{\hat{\mu} M_{T}}\left[\hat{\mu}\left(\tilde{y}(T)-y^{T}\right)\right]
$$

of the minimisator in terms of the given data and the unknown scalar $\hat{\mu}$.
Putting it in the constraint

$$
\begin{equation*}
\left\|M_{T} \hat{\varphi}^{T}-\tilde{y}(T)+y^{T}\right\|_{\mathcal{H}}=\varepsilon . \tag{20}
\end{equation*}
$$

we get

$$
\begin{equation*}
\varepsilon=\left\|R_{\hat{\mu} M_{T}}\left(\tilde{y}(T)-y^{T}\right)\right\|_{\mathcal{H}} . \tag{21}
\end{equation*}
$$

Optimal control constructive characterisation

Let $g: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$be given by

$$
\begin{equation*}
g(\mu)=\left\|R_{\mu M_{T}}\left(\tilde{y}(T)-y^{T}\right)\right\|_{\mathcal{H}}^{2} . \tag{22}
\end{equation*}
$$

The problem is reduced to a scalar (nonlinear) equation

$$
g(\hat{\mu})=\varepsilon^{2} .
$$

The equation is well defined for every $\varepsilon<\left\|\tilde{y}(T)-y^{T}\right\|$.

Optimal control constructive characterisation

Let $g: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$be given by

$$
\begin{equation*}
g(\mu)=\left\|R_{\mu M_{T}}\left(\tilde{y}(T)-y^{T}\right)\right\|_{\mathcal{H}}^{2} . \tag{22}
\end{equation*}
$$

The problem is reduced to a scalar (nonlinear) equation

$$
g(\hat{\mu})=\varepsilon^{2} .
$$

The equation is well defined for every $\varepsilon<\left\|\tilde{y}(T)-y^{T}\right\|$.

The constructive algorithm

- Find the real value $\hat{\mu}$ (optimal Lagrange multiplier) as the unique solution to

$$
g(\hat{\mu})=\varepsilon^{2}
$$

for g given by (22).

- Find the vector $\hat{\varphi}^{T} \in \mathcal{H}$ (optimal dual final-state), as

$$
\hat{\varphi}^{T}=R_{\hat{\mu} M_{T}}\left[\hat{\mu}\left(\tilde{y}(T)-y^{T}\right)\right]
$$

for $R_{\mu M_{T}}=\left(I+\mu M_{T}\right)^{-1}$ and M_{T} given by (17).

- Find the function $\hat{\varphi}(t)$ (optimal dual variable), given by

$$
\hat{\varphi}(t)=e^{(t-T) \mathcal{A}^{*}} \hat{\varphi}^{T} .
$$

- The optimal control is given by

$$
\hat{u}=-G \mathcal{B}^{*} \hat{\varphi}+G C^{*} d,
$$

where $G=\left(C^{*} C\right)^{-1}$.

Spectral decomposition

Denote:
$\left(\psi_{n}\right)_{n \in \mathbf{N}}$ - an orthonormal basis of H, consisting of eigenfunction of \mathcal{A}
$\left(\lambda_{n}\right)_{n \in \mathbf{N}}$ - a sequence of corresponding (nonnegative) eigenvalues λ_{n},

$$
\lim _{n} \lambda_{n}=+\infty
$$

y_{n} - the n-th Fourier coefficient of $y \in H$.
The operator M_{T} determined by

$$
M_{T}\left(\varphi^{T}\right)=\int_{0}^{T} e^{(s-T) \mathcal{A}^{\prime}} \mathcal{B}_{s}\left\{\left[\left(C^{*} C\right)^{-1}\left(\mathcal{B}^{*} e^{(\cdot-T) \mathcal{A}^{*}} \varphi^{T}\right)\right](s)\right\} d s
$$

can be presented by an infinite matrix with entries

$$
\begin{equation*}
\left(M_{t}\right)_{j k}=\int_{0}^{T}\left\langle\left(C^{*} C\right)^{-1}\left[\mathcal{B}^{*} e^{\lambda_{j}(\cdot-T)} \psi_{j}\right](s), \mathcal{B}^{*} e^{\lambda_{k}(s-T)} \psi_{k}\right\rangle_{\mathcal{H}} d s \tag{23}
\end{equation*}
$$

Truncation - required for practical implementation of the algo

Truncation and error estimates

For $\varphi \in \mathcal{H}$ define its truncation

$$
\varphi^{N}=\sum_{j=1}^{N} \varphi_{j} \psi_{j}
$$

and similarly $M_{T}^{N}: \mathbf{R}^{N} \rightarrow \mathbf{R}^{N}$

$$
\left(M_{T}^{N}\right)_{i j}=M_{T} \psi_{i} \cdot \psi_{j}, \quad, i, j=1 . . N
$$

Define also

$$
R^{N}(\mu)=\left(I+\mu M_{T}^{N}\right)^{-1}
$$

and

$$
\begin{equation*}
g^{N}(\mu)=\left\|R^{N}\left[\tilde{y}(T)-y^{T}\right]^{N}\right\|_{\mathbf{R}^{n}}^{2} \tag{24}
\end{equation*}
$$

g^{N} preserves the "good" properties of g.

Truncation and error estimates

The equation

$$
g^{N}(\mu)=\varepsilon^{2}
$$

is well posed for every $\varepsilon<\left\|\left[\tilde{y}(T)-y^{T}\right]^{N}\right\|_{\mathbf{R}^{n}}^{2}$.

Truncation and error estimates

The equation

$$
g^{N}(\mu)=\varepsilon^{2}
$$

is well posed for every $\varepsilon<\left\|\left[\tilde{y}(T)-y^{T}\right]^{N}\right\|_{\mathbf{R}^{n}}^{2}$.

The algo -truncated version

- Approximation $\hat{\mu^{N}}$ of the optimal Lagrange multiplier as the unique solution to

$$
g^{N}(\hat{\mu})=\varepsilon^{2} ;
$$

for g^{N} given by (24).

- the approximation of the optimal dual final state

$$
\left(\hat{\varphi}^{T}\right)^{\star, N}=\hat{\mu}^{N} R^{N}\left(\hat{\mu}^{N}\right)\left[\tilde{y}(T)-y^{T}\right]^{N}
$$

Important

$$
\left(\hat{\varphi}^{T}\right)^{\star, N} \neq\left(\hat{\varphi}^{T}\right)^{N}, \quad \hat{u}^{\star, N} \neq \hat{u}^{N}
$$

(nonlinear effects!).

- the approximation of the optimal dual variable

$$
\hat{\varphi}^{\star, N}(t)=e^{(t-T) \mathcal{A}^{*}} \hat{\varphi}^{T} .
$$

- the approximation of the optimal control

$$
\hat{u}^{\star, N}=-G \mathcal{B}^{*} \hat{\varphi}^{\star, N}+G C^{*} d^{N}
$$

where $G=\left(C^{*} C\right)^{-1}$.
Much boring work to get what is expected

$$
\hat{u}^{\star, N} \approx \hat{u}^{N}
$$

Estimates

The problem is reduced to determining

$$
R^{N}(\mu)=\left(I+\mu M_{T}^{N}\right)^{-1},
$$

i.e. to the entries of the matrix M_{T}^{N} :

$$
\left(M_{T}\right)_{j k}=\int_{0}^{T}\langle\underbrace{\left(C^{*} C\right)^{-1}\left[\mathcal{B}^{*} e^{\lambda_{j}(-T)} \psi_{j}\right](s)}_{\text {delicate part }}, \mathcal{B}^{*} e^{\lambda_{k}(s-T)} \psi_{k}\rangle_{\mathcal{H}} d s .
$$

Control cost

The problem is easy if there is no trajectory regulation:

$$
\begin{equation*}
J(u)=\frac{1}{2} \sum_{k} \int_{0}^{T} a_{k}(t)\left[u(t)-u^{d}(t)\right]_{k}^{2} d t \tag{25}
\end{equation*}
$$

in which case

$$
\left[C_{1} u\right](t)=\sum_{k} \sqrt{\alpha_{k}(t)}[u(t)]_{k} \psi_{k} ;
$$

Clearly, $C_{1}^{*}=C_{1}$ and

$$
\begin{equation*}
\left[C_{1}^{*} C_{1} u\right](t)=\sum_{k} \alpha_{k}(t)[u(t)]_{k} \psi_{k} \tag{26}
\end{equation*}
$$

Control cost- example

Put $\alpha_{k}=e^{5 t}$.
($\mathcal{P}) \quad \min _{u \in L^{2}((0, L) \times(0, T))}\left\{\int_{0}^{T} e^{5 t}\|u(t)\|_{L^{2}(0, L)}^{2}: \quad\left\|y(T)-y^{T}\right\|_{L^{2}(0, \pi)} \leq \varepsilon\right\}$,
where:

- equation: $L=\pi, T=1$ and

$$
\begin{cases}\partial_{t} y(x, t)-\partial_{x x} y(x, t)=u(x, t) \cdot \mathcal{I}_{\omega_{c}}(x) & x \in(0, L), t \in[0, T] \\ y(0, t)=y(L, t)=0 & t \in[0, T] \\ y(x, 0)=0 & x \in[0, L]\end{cases}
$$

with $\omega_{c}=\left(\frac{L}{8}, \frac{L}{4}\right) \cup\left(\frac{L}{2}, \frac{3 L}{4}\right)$;

Exmple - Control cost

- final target (blue):

$$
y^{T}(x)=\frac{L}{2}-\left\|x-\frac{L}{2}\right\| ;
$$

We used $\psi_{n}(x)=\sqrt{\frac{2}{L}} \cdot \sin \left(\frac{n x \pi}{L}\right), \lambda_{n}=n^{2}$ and $N=230$.

$\varepsilon^{2}=\left[\begin{array}{ll}0.5, & 0.001] \cdot \varepsilon_{N}^{2} .\end{array}\right.$

Trajectory regulation

$$
\begin{aligned}
& \min _{u}\left\{\int_{0}^{T} \alpha(t)|u(t)|^{2} d t+\int_{0}^{T} \beta(t)\left|y(t)-y^{d}\right|^{2} d t: \quad\left\|y(T)-y^{T}\right\|_{L^{2}(0, \pi)} \leq \varepsilon\right\} \\
& C=\left(C_{1}, C_{2}\right) \text { where }
\end{aligned}
$$

$$
\begin{align*}
{\left[C_{1} u\right](t) } & =\sqrt{\alpha(t)} u(t) \tag{27}\\
{\left[C_{2} u\right](t) } & =\sqrt{\beta(t)} y_{u}(t) \tag{28}
\end{align*}
$$

We know $C^{*}\left(a_{1}, a_{2}\right)=C_{1}^{*} a_{1}+C_{2}^{*} a_{2}$ and we have to find

$$
\begin{equation*}
G=\left(C_{1}^{*} C_{1}+C_{2}^{*} C_{2}\right)^{-1} \tag{29}
\end{equation*}
$$

More precisely

$$
G\left[\mathcal{B}^{*} e^{\lambda_{j}(\cdot-T)} \psi_{j}\right] .
$$

Trajectory regulation

$$
\left(C_{1}^{*} C_{1}+C_{2}^{*} C_{2}\right) u=\alpha(t) u(t)+\int_{t}^{T} \int_{0}^{s} \beta(s) B^{*} e^{(t-s) A^{*}} e^{(q-s) A} B u(q) d q d s
$$

What is its inverse?
Try the solution of

$$
\left(C_{1}^{*} C_{1}+C_{2}^{*} C_{2}\right) u(t)=\mathcal{B}^{*} e^{(t-T) A} \psi_{j}
$$

Trajectory regulation

$$
\left(C_{1}^{*} C_{1}+C_{2}^{*} C_{2}\right) u=\alpha(t) u(t)+\int_{t}^{T} \int_{0}^{s} \beta(s) B^{*} e^{(t-s) A^{*}} e^{(q-s) A} B u(q) d q d s
$$

What is its inverse?
Try the solution of

$$
\left(C_{1}^{*} C_{1}+C_{2}^{*} C_{2}\right) u(t)=\mathcal{B}^{*} e^{(t-T) A} \psi_{j}
$$

in the form

$$
u=\mathcal{B}^{*} \psi_{j} v_{j}(t),
$$

for some unknown function v_{j}.
It is sufficient that

$$
\alpha(t) v_{j}(t) \psi_{j}++\int_{t}^{T} \int_{0}^{s} \beta(s) e^{(t-s) A^{*}} e^{(q-s) A} B \mathcal{B}^{*} \psi_{j} v_{j}(q)=e^{(t-T) A} \psi_{j}
$$

Manipulation and double derivation with respect to time

$$
\begin{aligned}
\left(\ddot{v}_{j}(t)+\left[2 \frac{\dot{\alpha}(t)}{\alpha(t)}-\frac{\dot{\beta}(t)}{\beta(t)}\right] \dot{v}_{j}(t)\right. & \left.+\left[-\lambda_{j}^{2}+\frac{\ddot{\alpha}(t)}{\alpha(t)}-\frac{\dot{\alpha}(t) \dot{\beta}(t)}{\alpha(t) \beta(t)}+\lambda \frac{\dot{\beta}(t)}{\beta(t)}\right] v_{j}(t)\right) \psi_{j} \\
& -\frac{\beta(t)}{\alpha(t)} v_{j}(t) e^{-t \lambda_{j}} e^{t A} \mathcal{B} \mathcal{B}^{*} \psi_{j}=0 .
\end{aligned}
$$

Trajectory regulation

Assume $\mathcal{B B}^{*}$ diagonalisable (strong assumption).

$$
\begin{aligned}
\ddot{v}_{j}(t) & +\left[2 \frac{\dot{\alpha}(t)}{\alpha(t)}-\frac{\dot{\beta}(t)}{\beta(t)}\right] \dot{v}_{j}(t) \\
& +\left[-\lambda_{j}^{2}+\frac{\ddot{\alpha}(t)}{\alpha(t)}-\frac{\dot{\alpha}(t) \dot{\beta}(t)}{\alpha(t) \beta(t)}+\lambda \frac{\dot{\beta}(t)}{\beta(t)}-\mu_{j} \frac{\beta(t)}{\alpha(t)}\right] v_{j}=0
\end{aligned}
$$

Second order ODE for v_{j}.
We solve the problem for α, β :

- constant functions
- exponential functions
- characteristic funstions of a time interval

We obtain the missing puzzle of the algo - entries of the matrix M_{T} :

$$
\left(M_{T}\right)_{j k}=\int_{0}^{t}\langle\underbrace{G\left[\mathcal{B}^{*} e^{\lambda_{j}(\cdot-T)} \psi_{j}\right](s)}_{\mathcal{B}^{*} \psi_{j} v_{j}(t)}, \mathcal{B}^{*} e^{\lambda_{k}(s-T)} \psi_{k}\rangle_{\mathcal{H}} d s
$$

Example - Trajectory regulation

$$
\min _{u}\left\{\alpha \int_{0}^{T}|u(t)|^{2} d t+\beta \int_{0}^{T}\left|y(t)-y^{d}\right|^{2} d t: \quad\left\|y(T)-y^{T}\right\|_{L^{2}(0, \pi)} \leq \varepsilon\right\}
$$

where:

- equation: the same as before, but with $\omega_{c}=\Omega$;
- final target $(T=1)$:

$$
y^{T}(x)=3 \exp \left(-15\left(x-\frac{3 \pi}{4}\right)^{2}\right)
$$

- trajectory target: for $t_{1}=\frac{2}{3} T$,

$$
y^{d}(x, t)=5 \exp \left(-15\left(x-\frac{\pi}{4}\right)^{2}\right) \mathcal{I}_{\left[0, t_{1}\right]}(t)
$$

- $\beta=1$;

We used $N=25$.

Figure: Red: y^{T}. Blue: y^{d}.
y^{d} is targeted just during $t \in\left[0, \frac{2}{3}\right]$.

Figure: For $\alpha=0.01$ and $\varepsilon^{2}=0.001 g(0)$, the optimal control (Left) and the optimal state (Right). Red line: y^{T}. Blue line: y^{d}.

Figure: For $\alpha=0.001$ and $\varepsilon^{2}=0.001 g(0)$, the optimal control (Left) and the optimal state (Right). Red line: y^{T}. Blue line: y^{d}.

Conclusion

The new approach:

- exploring spectral representation of the solution by eigenfunctions of \mathcal{A},
- an explicit expression of the optimal constrained control in terms of the given problem data.
- the numerical issues are reduced to finding the unique root of a scalar function.
- same formula applies indpendetnly of the dimension. No curse of dimensionality.
Price to pay:
- knowledge of eigenfunctions, If the problem has to be considered many times for different data, but the same operator, this can be done offline.
- $B B^{*}$ diagonalisable

This is not inevitable asumption, just the computations turn to be more delicate to handle without numerical tools.

Conclusion

The new approach:

- exploring spectral representation of the solution by eigenfunctions of \mathcal{A},
- an explicit expression of the optimal constrained control in terms of the given problem data.
- the numerical issues are reduced to finding the unique root of a scalar function.
- same formula applies indpendetnly of the dimension. No curse of dimensionality.
Price to pay:
- knowledge of eigenfunctions, If the problem has to be considered many times for different data, but the same operator, this can be done offline.
- $B B^{*}$ diagonalisable This is not inevitable asumption, just the computations turn to be more delicate to handle without numerical tools.

Thanks for your attention!

