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Seমng
Linear vibrational system, modeled as a 2nd order
matrix differential equation

Mẍ+ Cẋ+ Kx = F

Mmass matrix
C damping matrix
K stifness matrix
F external force
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Aim

Attenuate unwanted vibrations of the system by the
use of passive damping.

In other words, find an appropriate damping matrix C
such that the system vibrates as little as possible.

System will have Nmodes of vibration, N dimension of
the system, not all modes are dangerous. Usually
there is a range of dangerous ones.
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Why?
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Why?
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Does it work?

Can one succesfully attenuate dangerous vibration by
passive damping?
Yes!
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How to do it?

Pose the problem of find good/optimal damping
mechanism as an optimization problem. So we need
an optimization criterion.

(Too) many criteria in use for different applications
(Google Scholar has 342 000 hits for ”damping
criteria”).
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How to do it?

Important classes:
Ô based on the analysis of stationary system
(external force F = 0, excitation by the initial
condition), some interesting ones:
Õ based on eigenvalues (e.g. maxℜλ, max ℜλ

|λ| )
Õ based on the total energy (e.g. max

∫∞
0
E(t)dt,

avg.
∫∞
0
E(t)dt)

Ô based on the analysis of excitation by a particular
external force
Õ harmonic excitation
Õ periodic non-harmonic excitation
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How to do it?

For a random external force we can use the machinery
of control theory.
Again different criteria, most usefull ones:
Ô H2 norm
Ô H∞ norm
H2 norm criterion: external force modeled by
(white/coloured) noise, we obtain best damping for a
”typical” external force.
H2 norm criterion seems like the best choice for a large
class of vibrational systems (non-critical systems,
where external environment changes).
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Problem

When doing numerics, for some configurations we
obtain that the damping coefficient should be as large
as possible.

This does not make any sense.

It is not a numerics glitch. Can be shown analytically.
What is going on?
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Toy (academic) example

Let’s say we can choose any damping matrix D we
want.

What is the best damping matrix for the H2 norm
criterion?

D = ∞ ???

We are missing the initial condition, control theory
setting does not see it.
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If you pour concrete
over your structure,
it surely will not
vibrate. 12



Soluঞon

Use a mixed criterion, for example

avg.
∫ ∞

0

E(t)dt + ∥·∥H2

We mix one criterion which depends on the initial
condition but for the stationary problem and one
control-theoretic which does not depend on the initial
condition but treats a class of interesting external
forces.
Many options, another one:

max total energy + H∞ norm .
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Does it work?

It is well known that the best global damping matrix
for a wide class of criteria is given by a modal damping
matrix. These are matrices for which the vibrational
system decomposes to a system of uncoupled 1 DOF
systems.

For our mixed criterion, best global damping matrix is
also modal damping matrix.

Numerical expariments confirm that mixed criteria
lead to physically meaningful damping matrices.
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Thanks for the
attention!
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