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Aims of the talk

to give an introduction to unique continuation
principles and their cousins: observability
inequalities, uncertainty principles and spectral
inequalities and their use in establishing
controllability and estimating cost of controllability
for control systems, especially for the control of heat
equation, and

to present resent results about quantitative unique
continuation principle for Schrödinger operators on
unbounded domains and its application to control
theory for the heat equation.
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Concepts of controllability

We consider the equation in the unknown z : [0, T] → H

ż = Az+ Bu,
z(0) = z0.

Here u is the control function and the solution z of the
equation is called state.
This equation models a control system.
Under mild conditions the solution is given by

z(t) = etAz0 +
∫ t

0

e(t−s)ABu(s)ds, for all 0 ≤ t ≤ T.
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Concepts of controllability

Definition
The control system is exactly controllable in time T
if for any z0, zT there exists u such that the state z
satisfies z(T) = zT.
The control system is null controllable in time T if
for any z0 there exists u such that the state
satisfies z(T) = 0.
The control system is approximatively controllable
in time T if for any z0, zT and any ε > 0 there exists
u such that the state z satisfies ∥z(T)− zT∥ < ε.

In the case of control systems modelled by PDEs,
exactly controllability is too strong property.
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Checking controllability
We introduce the operator

LTu =

∫ T

0

e(T−s)ABu(s)ds.

Then z(T) = eTAz0 + LTu and we see that we have

exact controllability in time T ⇐⇒ R(LT) = H
null controllability in time T ⇐⇒ R(eTA) ⊂ R(LT)

approximate controllability in time T ⇐⇒ R(LT) = H
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The adjoint system
It is useful to introduce the adjoint system

φ̇ = −A∗φ,

φ(T) = φ0.

This system is without control and backwards in time.
The solution is given by

φ(t) = e(T−t)A∗φ0.

The adjoint system is interesting for us because

L∗T = B∗e(T−·)A∗

and we know that for operators F,G we have

R(F) ⊂ R(G) ⇐⇒ ∥F∗∥ ≤ c∥G∗∥, c > 0.

R(F) ⊂ R(G) ⇐⇒ N(F∗) ⊃ N(G∗).
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Controllability tests

Theorem
The system is null controllable in time T if and only if
there exists a constant c > 0 such that∫ T

0

∥B∗etA∗φ0∥2 dt ≥ c∥eTA∗φ0∥, for all φ0.

This is called an observability inequality.

Theorem
The system is approximately controllable in time T if and
only if

B∗etA∗φ0 = 0 for all 0 ≤ t ≤ T ⇐⇒ φ0 = 0.

This is called a unique continuation property (UCP).
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The heat equaঞon


∂tz−∆z = 1ωf in Ω× [0, T]
z = 0 on ∂Ω× [0, T]
z(0) = z0 in Ω

Its adjoint system is
−∂tφ−∆φ = 0 in Ω× [0, T]
φ = 0 on ∂Ω× [0, T]
φ(T) = φ0 in Ω

Here A = A∗ = ∆ and B = 1ω with ω ⊂ Ω. It follows
B∗φ = φ|ω.
The UCP now reads: if φ is the solution of the adjoint
equation and φ = 0 on ω × [0, T] then φ0 = 0.
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Unique conঞnuaঞon principle
The unique continuation property/principle for a
differential equation states that if z is the solution and
z = 0 on Ω′ ⊂ Ω, Ω′ nice, then z = 0 on Ω.

Hence, if our ω × [0, T] is nice and the adjoint equation
has a unique continuation property, then φ = 0 on
ω× [0, T] implies φ = 0 on Ω× [0, T] which implies φ0 = 0.

The heat equation has UCP for Ω open, bounded and
connected and Ω′ with positive measure, so it follows
that the heat equation is approximately controllable
for such Ω, Ω′.
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Quanঞtaঞve UCP & control cost
Roughly: if solution z is small on Ω′ ⊂ Ω, Ω′ nice, then z
should be not too large on Ω. Or more precisely

∥z∥Ω′ ≥ C∥z∥Ω, where C does not depend on z.

Using quantitative UCP one can obtain more detailed
information about the controllability.
Control cost for null controllability is defined as

C = C(T, z0) = inf{∥f∥ : z(T) = 0}.

Control cost coincides with the infimum of all
√
C, C

from the observability inequality.
Using quantitative UCP one can obtain an estimate for
the control cost C.
Hence, there is an important connection between
observability inequalities and quantitative UCPs .
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Spectral inequaliঞes
The link between observability inequalities and
quantitative UCPs is through a particular kind of
quantitative UCP which are sometimes called spectral
inequalities.
With χ(−∞,E)(A) we denote the spectral subspace of a
selfadjoint operator A corresponding to the part of the
spectrum contained in (−∞, E). A spectral inequality
has the form

∥ϕ∥Ω′ ≥ C∥ϕ∥Ω, for all ϕ ∈ R(χ(−∞,E)(A)).

A spectral inequality gives us a quantitative UCP for
the corresponding stationary equation, but instead of
solution we are plugging in (roughly) linear
combinations of eigenfunctions.
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Uncertainty principle
Another way of thinking about a spectral inequality

∥ϕ∥Ω′ ≥ C∥ϕ∥Ω, for all ϕ ∈ R(χ(−∞,E)(A)).

is as a uncertainty relation:
condition ϕ ∈ R(χ(−∞,E)(A)) is a condition in
momentum/Fourier–space, which then enforces
delocalization/flatness in direct space.
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Scale--free quanঞtaঞve UCP
For a real-valued V ∈ L∞(Rd) we define the self-adjoint
operator H on L2(Rd) as

H := −∆+ V.

Theorem (NTTV)
For all δ ∈ (0, 1/2), all (1, δ)-equidistributed sequences Z,
all measurable and bounded V : Rd → R, all E ≥ 0 and all
ψ ∈ R(χ(−∞,E)(H)) we have

∥ψ∥2L2(Sδ,Z) ≥ Csfuc∥ψ∥2L2(R)

where

Csfuc = Csfuc(d, δ, E, ∥V∥∞) := δN
(
1+∥V∥2/3∞ +

√
E
)
.
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Geometric seমng
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Remarks
The domain does not have to be Rd.

If the domain is bounded, the constant Csfuc does not
depend on the size of the domain.

The constant Csfuc is explicit.

Instead of ∆ we can have a 2nd order elliptic
differential operator.

There is also a scaled version of the theorem, where
the sizes of the little boxes are not 1 but some G > 0.

For an unbounded domain, the spectral subspace
R(χ(−∞,E)(H)) is infinite–dimensional.
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(Other) applicaঞons
Used to prove so called Wegner estimates for random
breather model, an ingredient towards the proof of
Anderson localization in theory of random Schrödinger
operators (models behaviour of e.g. alloys).

Used to prove eigenvalue movement and the
movement of spectral edges in the gaps of the
spectrum of a Schrödinger operator.
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Applicaঞon in control theory

{
∂tz−∆z+ Vz = 1ωf in Rd × [0, T]
z(0) = z0 in Rd

−V heat generation, ω = Sδ,Z

Theorem (NTTV)
For any δ ∈ (0, 1/2), any V ∈ L∞(Rd), any
(1, δ)-equidistributed sequence, and any z0 ∈ L2(Rd) the
system is null-controllable with cost

C ≤ C1eC2/T∥z0∥

with explicit C1, C2.
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Remarks
The fact that such systems with unbounded domains
are controllable is not trivial. The characterization of
control sets for which the system with unbounded
domain is controllable is still not known (except in the
case V = 0 with the full space domain).

All the earlier remarks still valid. Hence, in the
bounded case, the control cost does not depend on
the size of the domain. Hence one can concatenating
domains and still have the same control cost.

Another application is to have a fixed domain and
scale the control subsets. For example, keeping the
fraction δ/G constant.
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Techniques used in the proof
Quantitative UCP is proved using two interpolation
inequalities of the form

∥ψ∥X2 ≤ C∥ψ∥αX1∥ψ∥
1−α
X3 , X1 ⊂ X2 ⊂ X3,

obtained from two different Carleman inequalities
with explicit dependence on parameters, together
with a careful covering of the domain and a chaining
argument. The interpolation inequalities are applied
to the function Ψ, constructed from ψ ∈ R(χ(−∞,E)(H)),
such that ∂tΨ(0) = ψ, and such that it is an
eigenfunction of a new PDE in a higher dimension.

The control result is proved using a generalization of
Tenenbaum & Tucsnak 2011 to a non–discrete setting.
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Thanks for the
attention!


