

Approximation bounds for parameter dependent quadratic eigenvalue problem

Zoran Tomljanović

UNIVERSITY J. J. STROSSMAYER OF OSIJEK DEPARTMENT OF MATHEMATICS Trg Ljudevita Gaja 6 31000 Osijek, Croatia

http://www.mathos.unios.hr

ztomljan@mathos.hr

Joint work with:

Ninoslav Truhar

[2ND PROJECT MEETING, CONDYS, ZAGREB]

2 Nov 2017

Motivation Introduction

Consider a damped linear vibrating system (stationary case)

 $M\ddot{x} + D\dot{x} + Kx = 0,$ $x(0) = x_0, \quad and \quad \dot{x}(0) = \dot{x}_0,$

where $M, D, K \in \mathbb{R}^{n \times n}$ (mass, damping, stiffness), M and K > 0 positive definite.

 $D=C_{int}+C_{ext}$, where $C_{ext}\geq 0$ is external (viscous) damping. C_{int} internal damping e.g. $C_{int}=\alpha_c C_{crit}$, where

$$C_{crit} = 2M^{1/2}\sqrt{M^{-1/2}KM^{-1/2}}M^{1/2}$$

$$(\lambda^2 M + \lambda D + K)x = 0.$$

Motivation Introduction

Consider a damped linear vibrating system (stationary case)

$$M\ddot{x} + D\dot{x} + Kx = 0,$$

 $x(0) = x_0, \quad and \quad \dot{x}(0) = \dot{x}_0,$

where $M, D, K \in \mathbb{R}^{n \times n}$ (mass, damping, stiffness), M and K > 0 positive definite.

 $D=C_{int}+C_{ext}$, where $C_{ext}\geq 0$ is external (viscous) damping. C_{int} internal damping e.g. $C_{int}=\alpha_c C_{crit}$, where

$$C_{crit} = 2M^{1/2}\sqrt{M^{-1/2}KM^{-1/2}}M^{1/2}$$

$$(\lambda^2 M + \lambda D + K)x = 0.$$

Motivation Introduction

Consider a damped linear vibrating system (stationary case)

$$M\ddot{x} + D\dot{x} + Kx = 0,$$

 $x(0) = x_0, \quad and \quad \dot{x}(0) = \dot{x}_0,$

where $M, D, K \in \mathbb{R}^{n \times n}$ (mass, damping, stiffness), M and K > 0 positive definite.

 $D=C_{int}+C_{ext}$, where $C_{ext}\geq 0$ is external (viscous) damping. C_{int} internal damping e.g. $C_{int}=\alpha_c C_{crit}$, where

$$C_{crit} = 2M^{1/2}\sqrt{M^{-1/2}KM^{-1/2}}M^{1/2}$$

$$(\lambda^2 M + \lambda D + K)x = 0.$$

Motivation Introduction

Consider a damped linear vibrating system (stationary case)

$$M\ddot{x} + D\dot{x} + Kx = 0,$$

 $x(0) = x_0, \quad and \quad \dot{x}(0) = \dot{x}_0,$

where $M, D, K \in \mathbb{R}^{n \times n}$ (mass, damping, stiffness), M and K > 0 positive definite.

 $D=C_{int}+C_{ext}$, where $C_{ext}\geq 0$ is external (viscous) damping. C_{int} internal damping e.g. $C_{int}=\alpha_c C_{crit}$, where

$$C_{crit} = 2M^{1/2}\sqrt{M^{-1/2}KM^{-1/2}}M^{1/2}$$

$$(\lambda^2 M + \lambda D + K)x = 0.$$

Motivation Introduction

Consider a damped linear vibrating system (stationary case)

$$M\ddot{x} + D\dot{x} + Kx = 0,$$

 $x(0) = x_0, \quad and \quad \dot{x}(0) = \dot{x}_0,$

where $M, D, K \in \mathbb{R}^{n \times n}$ (mass, damping, stiffness), M and K > 0 positive definite.

 $D=C_{int}+C_{ext}$, where $C_{ext}\geq 0$ is external (viscous) damping. C_{int} internal damping e.g. $C_{int}=\alpha_c C_{crit}$, where

$$C_{crit} = 2M^{1/2}\sqrt{M^{-1/2}KM^{-1/2}}M^{1/2}$$

$$(\lambda^2 M + \lambda D + K)x = 0.$$

 $m_i > 0$ -ith mass, $k_i > 0$ -ith stiffness, v_1 , v_2 - viscosities.

 $m_i > 0$ -*i*th mass, $k_i > 0$ -*i*th stiffness, v_1, v_2 - viscosities.

Motivation Introduction

Very important question arises in considering such systems:

For the given mass (M) and stiffness (K) determine the best (optimal) damping which will insure optimal evanescence.

Very important question arises in considering such systems:

For the given mass (M) and stiffness (K) determine the best (optimal) damping which will insure optimal evanescence.

Motivation

Very important question arises in considering such systems:

For the given mass (M) and stiffness (K) determine the best (optimal) damping which will insure optimal evanescence.

Motivation

Very important question arises in considering such systems:

For the given mass (M) and stiffness (K) determine the best (optimal) damping which will insure optimal evanescence.

Motivation

Spectral abscissa criterion:

$$\max_{k} \operatorname{Re}\left(\lambda_{k}\right) \quad \to \quad \min,$$

where λ_k are the complex eigenvalues of $(\lambda^2 M + \lambda D + K) x = 0$.

Motivation Introduction

Direct Velocity Feedback (DVF):

 $M\ddot{x} + Kx = bu,$ structure equation $y = b^T \dot{x},$ output equation (velocity sensor) u = -vy. control equation

Find $v \in \mathbb{R}$, s.t. the resonance peaks are minimized.

Mechanical systems with external force (non-stationary case):

$$M\ddot{x}(t) + D\dot{x}(t) + Kx(t) = f(t)$$

Motivation Introduction

Direct Velocity Feedback (DVF):

$$\begin{split} M\ddot{x} + Kx &= bu, & \text{structure equation} \\ y &= b^T \dot{x}, & \text{output equation (velocity sensor)} \\ u &= -vy. & \text{control equation} \end{split}$$

Find $v \in \mathbb{R}$, s.t. the resonance peaks are minimized.

Mechanical systems with external force (non-stationary case):

$$M\ddot{x}(t) + D\dot{x}(t) + Kx(t) = f(t)$$

Motivation Introduction

Direct Velocity Feedback (DVF):

$M\ddot{x} + Kx = bu,$	structure equation
$y = b^T \dot{x},$	output equation (velocity sensor)
u = -vy.	control equation

Find $v \in \mathbb{R}$, s.t. the resonance peaks are minimized.

Mechanical systems with external force (non-stationary case):

$$M\ddot{x}(t) + D\dot{x}(t) + Kx(t) = f(t)$$

Motivation Introduction

Direct Velocity Feedback (DVF):

$$\begin{split} M\ddot{x} + Kx &= bu, & \text{structure equation} \\ y &= b^T \dot{x}, & \text{output equation (velocity sensor)} \\ u &= -vy. & \text{control equation} \end{split}$$

Find $v \in \mathbb{R}$, s.t. the resonance peaks are minimized.

Mechanical systems with external force (non-stationary case):

$$M\ddot{x}(t) + D\dot{x}(t) + Kx(t) = f(t)$$

Motivation Introduction

Direct Velocity Feedback (DVF):

$$\begin{split} M\ddot{x} + Kx &= bu, & \text{structure equation} \\ y &= b^T \dot{x}, & \text{output equation (velocity sensor)} \\ u &= -vy. & \text{control equation} \end{split}$$

Find $v \in \mathbb{R}$, s.t. the resonance peaks are minimized.

Mechanical systems with external force (non-stationary case):

$$M\ddot{x}(t) + D\dot{x}(t) + Kx(t) = f(t)$$

Motivation Introduction

The first problem: Tracking eigenvalues

describe the behavior of the all eigenvalues or just of the part of spectrum for a different varieties of $\ensuremath{\mathbf{v}}$

The second poblem: For considered QEP

 $(\lambda^2 M + \lambda D + K)x = 0,$

where $M, D, K \in \mathbb{C}^{n \times n}$ are Hermitian matrices. and corresponding perturbed QEP

$$(\widetilde{\lambda}^2(M+\delta M)+\widetilde{\lambda}(D+\delta D)+K+\delta K)\widetilde{x}=0,$$

- i) bounds for difference of "appropriate scalar products"
- ii) $sin\Theta$ bound

Motivation Introduction

The first problem: Tracking eigenvalues

describe the behavior of the all eigenvalues or just of the part of spectrum for a different varieties of ${\bf v}$

The second poblem: For considered QEP

 $(\lambda^2 M + \lambda D + K)x = 0,$

where $M, D, K \in \mathbb{C}^{n \times n}$ are Hermitian matrices. and corresponding perturbed QEP

$$(\widetilde{\lambda}^2(M+\delta M)+\widetilde{\lambda}(D+\delta D)+K+\delta K)\widetilde{x}=0,$$

- i) bounds for difference of "appropriate scalar products"
- ii) $sin\Theta$ bound

Motivation Introduction

The first problem: Tracking eigenvalues

describe the behavior of the all eigenvalues or just of the part of spectrum for a different varieties of ${\bf v}$

The second poblem: For considered QEP

 $(\lambda^2 M + \lambda D + K)x = 0,$

where $M, D, K \in \mathbb{C}^{n \times n}$ are Hermitian matrices.

and corresponding perturbed QEP

$$(\widetilde{\lambda}^2(M+\delta M)+\widetilde{\lambda}(D+\delta D)+K+\delta K)\widetilde{x}=0,$$

- i) bounds for difference of "appropriate scalar products"
- ii) $sin\Theta$ bound

Motivation Introduction

The first problem: Tracking eigenvalues

describe the behavior of the all eigenvalues or just of the part of spectrum for a different varieties of ${\bf v}$

The second poblem: For considered QEP

$$(\lambda^2 M + \lambda D + K)x = 0,$$

where $M, D, K \in \mathbb{C}^{n \times n}$ are Hermitian matrices. and corresponding perturbed QEP

$$(\widetilde{\lambda}^2(M+\delta M)+\widetilde{\lambda}(D+\delta D)+K+\delta K)\widetilde{x}=0,$$

- i) bounds for difference of "appropriate scalar products"
- ii) $sin\Theta$ bound

Motivation Introduction

The first problem: Tracking eigenvalues

describe the behavior of the all eigenvalues or just of the part of spectrum for a different varieties of ${\bf v}$

The second poblem: For considered QEP

$$(\lambda^2 M + \lambda D + K)x = 0,$$

where $M, D, K \in \mathbb{C}^{n \times n}$ are Hermitian matrices. and corresponding perturbed QEP

$$(\widetilde{\lambda}^2(M+\delta M)+\widetilde{\lambda}(D+\delta D)+K+\delta K)\widetilde{x}=0,$$

where $M+\delta M,$ $D+\delta D$ and $K+\delta K$ are also Hermitian.

i) bounds for difference of "appropriate scalar products"

ii) $sin\Theta$ bound

Motivation Introduction

The first problem: Tracking eigenvalues

describe the behavior of the all eigenvalues or just of the part of spectrum for a different varieties of ${\bf v}$

The second poblem: For considered QEP

$$(\lambda^2 M + \lambda D + K)x = 0,$$

where $M, D, K \in \mathbb{C}^{n \times n}$ are Hermitian matrices. and corresponding perturbed QEP

$$(\widetilde{\lambda}^2(M+\delta M)+\widetilde{\lambda}(D+\delta D)+K+\delta K)\widetilde{x}=0,$$

- i) bounds for difference of "appropriate scalar products"
- ii) $sin\Theta$ bound

Motivation Introduction

The first problem: Tracking eigenvalues

describe the behavior of the all eigenvalues or just of the part of spectrum for a different varieties of ${\bf v}$

The second poblem: For considered QEP

$$(\lambda^2 M + \lambda D + K)x = 0,$$

where $M, D, K \in \mathbb{C}^{n \times n}$ are Hermitian matrices. and corresponding perturbed QEP

$$(\widetilde{\lambda}^2(M+\delta M)+\widetilde{\lambda}(D+\delta D)+K+\delta K)\widetilde{x}=0,$$

where $M + \delta M$, $D + \delta D$ and $K + \delta K$ are also Hermitian.

i) bounds for difference of "appropriate scalar products"

ii) $sin\Theta$ bound

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Eigenvalue behavior $\lambda(v)$:

For $0 \leq \mathbf{v} \leq v_i \ll 1$, i = 1, ..., k: eigenvalues $\lambda(\mathbf{v})$ can be efficiently approximated by *modal approximation*¹. For $\mathbf{v} \geq v_i \gg 1$, i = 1, ..., k: eigenvalues $\lambda(\mathbf{v})$ can be efficiently approximated using².

The new result:

We present an efficient way for tracking $\lambda(\mathbf{v}), \mathbf{v} = [v_1, \dots, v_k]$, for $0 \leq v_i \leq V_M, i = 1, \dots, k$. Here V_M is of modest (even arbitrary) magnitude.

¹K. Veselić, Damped Oscillations of Linear Systems — a mathematical introduction, Springer Lecture Notes in Mathematics, 2011

²I. Nakić, Z. Tomljanović, N. Truhar, Optimal Direct Velocity Feedback, Applied mathematics and computation 225 (2013), 590-600

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Eigenvalue behavior $\lambda(v)$:

For $0 \leq \mathbf{v} \leq v_i \ll 1$, i = 1, ..., k: eigenvalues $\lambda(\mathbf{v})$ can be efficiently approximated by *modal approximation*¹.

For $\mathbf{v} \ge v_i \gg 1$, $i = 1, \dots, k$: eigenvalues $\lambda(\mathbf{v})$ can be efficiently approximated using ².

The new result:

We present an efficient way for tracking $\lambda(\mathbf{v}), \mathbf{v} = [v_1, \dots, v_k]$, for $0 \le v_i \le V_M, i = 1, \dots, k$. Here V_M is of modest (even arbitrary) magnitude.

¹K. Veselić, Damped Oscillations of Linear Systems — a mathematical introduction, Springer Lecture Notes in Mathematics, 2011

²I. Nakić, Z. Tomljanović, N. Truhar, Optimal Direct Velocity Feedback, Applied nathematics and computation 225 (2013), 590-600

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Eigenvalue behavior $\lambda(v)$:

For $0 \leq \mathbf{v} \leq v_i \ll 1$, $i = 1, \ldots, k$: eigenvalues $\lambda(\mathbf{v})$ can be efficiently approximated by *modal approximation*¹. For $\mathbf{v} \geq v_i \gg 1$, $i = 1, \ldots, k$: eigenvalues $\lambda(\mathbf{v})$ can be efficiently approximated using ².

The new result:

We present an efficient way for tracking $\lambda(\mathbf{v})$, $\mathbf{v} = [v_1, \ldots, v_k]$, for $0 \le v_i \le V_M$, $i = 1, \ldots, k$. Here V_M is of modest (even arbitrary) magnitude.

¹K. Veselić, Damped Oscillations of Linear Systems — a mathematical introduction, Springer Lecture Notes in Mathematics, 2011

²I. Nakić, Z. Tomljanović, N. Truhar, Optimal Direct Velocity Feedback, Applied mathematics and computation 225 (2013), 590-600

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Eigenvalue behavior $\lambda(v)$:

For $0 \leq \mathbf{v} \leq v_i \ll 1$, i = 1, ..., k: eigenvalues $\lambda(\mathbf{v})$ can be efficiently approximated by *modal approximation*¹. For $\mathbf{v} \geq v_i \gg 1$, i = 1, ..., k: eigenvalues $\lambda(\mathbf{v})$ can be efficiently approximated using ².

The new result:

We present an efficient way for tracking $\lambda(\mathbf{v})$, $\mathbf{v} = [v_1, \dots, v_k]$, for $0 \leq v_i \leq V_M$, $i = 1, \dots, k$. Here V_M is of modest (even arbitrary) magnitude.

¹K. Veselić, Damped Oscillations of Linear Systems — a mathematical introduction, Springer Lecture Notes in Mathematics, 2011

²I. Nakić, Z. Tomljanović, N. Truhar, Optimal Direct Velocity Feedback, Applied mathematics and computation 225 (2013), 590-600

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Eigenvalue behavior $\lambda(v)$:

For $0 \leq \mathbf{v} \leq v_i \ll 1$, i = 1, ..., k: eigenvalues $\lambda(\mathbf{v})$ can be efficiently approximated by *modal approximation*¹. For $\mathbf{v} \geq v_i \gg 1$, i = 1, ..., k: eigenvalues $\lambda(\mathbf{v})$ can be efficiently approximated using ².

The new result:

We present an efficient way for tracking $\lambda(\mathbf{v})$, $\mathbf{v} = [v_1, \ldots, v_k]$, for $0 \leq v_i \leq V_M$, $i = 1, \ldots, k$. Here V_M is of modest (even arbitrary) magnitude.

¹K. Veselić, Damped Oscillations of Linear Systems — a mathematical introduction, Springer Lecture Notes in Mathematics, 2011

²I. Nakić, Z. Tomljanović, N. Truhar, Optimal Direct Velocity Feedback, Applied mathematics and computation 225 (2013), 590-600

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

We consider a damped linear vibrating system

 $M\ddot{x} + D\dot{x} + Kx = 0$

with M, D, K > 0.

Linearization

• Let Φ simultaneously diagonalizes pair (M, K)

$$\Phi^T K \Phi = \Omega^2 = \operatorname{diag}(\omega_1^2, \dots, \omega_n^2)$$
 and $\Phi^T M \Phi = I$.

With $x=\Phi x_{\Phi}$ and $y_1=\Omega x_{\Phi}$, $y_2=\dot{x}_{\Phi}$ we have

$$\frac{d}{dt} \underbrace{\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}}_{y} = \underbrace{\begin{bmatrix} 0 & \Omega \\ -\Omega & -\Phi^T D(\mathbf{v})\Phi \end{bmatrix}}_{A(\mathbf{v})} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

We consider a damped linear vibrating system

$$M\ddot{x} + D\dot{x} + Kx = 0$$

with M, D, K > 0.

Linearization

• Let Φ simultaneously diagonalizes pair (M, K)

$$\Phi^T K \Phi = \Omega^2 = \operatorname{diag}(\omega_1^2, \dots, \omega_n^2)$$
 and $\Phi^T M \Phi = I$.

With $x = \Phi x_{\Phi}$ and $y_1 = \Omega x_{\Phi}$, $y_2 = \dot{x}_{\Phi}$ we have

$$\frac{d}{dt} \underbrace{\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}}_{y} = \underbrace{\begin{bmatrix} 0 & \Omega \\ -\Omega & -\Phi^T D(\mathbf{v})\Phi \end{bmatrix}}_{A(\mathbf{v})} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

We consider a damped linear vibrating system

$$M\ddot{x} + D\dot{x} + Kx = 0$$

with M, D, K > 0.

Linearization

• Let Φ simultaneously diagonalizes pair (M, K)

$$\Phi^T K \Phi = \Omega^2 = \operatorname{diag}(\omega_1^2, \dots, \omega_n^2)$$
 and $\Phi^T M \Phi = I$.

With $x = \Phi x_{\Phi}$ and $y_1 = \Omega x_{\Phi}$, $y_2 = \dot{x}_{\Phi}$ we have

$$\frac{d}{dt} \underbrace{\left[\begin{array}{c} y_1 \\ y_2 \end{array}\right]}_{y} = \underbrace{\left[\begin{array}{cc} 0 & \Omega \\ -\Omega & -\Phi^T D(\mathbf{v})\Phi \end{array}\right]}_{A(\mathbf{v})} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Basic idea:

If $\|C(:, r+1:n)\| (= \|C(r+1:n, :)\|)$ is small.

We approximate A_P (after the perfect shuffle permutation) with $\overline{A_P}$

Hopping that: $r \ll n$, approximate $A(\mathbf{v})y(\mathbf{v}) = \lambda(\mathbf{v})y(\mathbf{v})$ with $\widetilde{A}_P(\mathbf{v})\widetilde{y}(\mathbf{v}) = \widetilde{\lambda}(\mathbf{v})\widetilde{y}(\mathbf{v})$.

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Basic idea:

If $\|C(:, r+1:n)\| (= \|C(r+1:n, :)\|)$ is small.

We approximate A_P (after the perfect shuffle permutation) with $\overline{A_P}$

Hopping that: $r \ll n$, approximate $A(\mathbf{v})y(\mathbf{v}) = \lambda(\mathbf{v})y(\mathbf{v})$ with $\widetilde{A}_P(\mathbf{v})\widetilde{y}(\mathbf{v}) = \widetilde{\lambda}(\mathbf{v})\widetilde{y}(\mathbf{v})$.

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Basic idea:

If $\|C(:, r+1:n)\| (= \|C(r+1:n, :)\|)$ is small.

We approximate A_P (after the perfect shuffle permutation) with $\overline{A_P}$

Hopping that: $r \ll n$, approximate $A(\mathbf{v})y(\mathbf{v}) = \lambda(\mathbf{v})y(\mathbf{v})$ with $\widetilde{A}_P(\mathbf{v})\widetilde{y}(\mathbf{v}) = \widetilde{\lambda}(\mathbf{v})\widetilde{y}(\mathbf{v})$.

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Basic idea:

If $\|C(:, r+1:n)\| (= \|C(r+1:n, :)\|)$ is small.

We approximate A_P (after the perfect shuffle permutation) with $\widetilde{A_P}$

Hopping that:
$$r \ll n$$
, approximate $A(\mathbf{v})y(\mathbf{v}) = \lambda(\mathbf{v})y(\mathbf{v})$
with $\widetilde{A}_P(\mathbf{v})\widetilde{y}(\mathbf{v}) = \widetilde{\lambda}(\mathbf{v})\widetilde{y}(\mathbf{v})$.
Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Questions:

How to choose reduced dimension r? What is the error made by this approximation? How reduced dimension r and the error depend on parameters v?

Answers:

For the reduced dimension r we use approximation derived for damping of all eigenfrequencies ³ and for damping only selected eigenfrequencies ⁴. The error and eigenvalue approximation will be presented.

³P. Benner, Z. Tomljanović, N. Truhar, Dimension reduction for damping optimization in linear vibrating system, Journal of Applied Mathematics and Mechanics 91/3 (2011), 179-191

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Questions:

How to choose reduced dimension r?

What is the error made by this approximation? How reduced dimension r and the error depend on parame:

Answers:

For the reduced dimension r we use approximation derived for damping of all eigenfrequencies ³ and for damping only selected eigenfrequencies ⁴. The error and eigenvalue approximation will be presented.

³P. Benner, Z. Tomljanović, N. Truhar, Dimension reduction for damping optimization in linear vibrating system, Journal of Applied Mathematics and Mechanics 91/3 (2011), 179-191

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Questions:

How to choose reduced dimension r? What is the error made by this approximation?

How reduced dimension r and the error depend on parameters v?

Answers:

For the reduced dimension r we use approximation derived for damping of all eigenfrequencies ³ and for damping only selected eigenfrequencies ⁴. The error and eigenvalue approximation will be presented.

³P. Benner, Z. Tomljanović, N. Truhar, Dimension reduction for damping optimization in linear vibrating system, Journal of Applied Mathematics and Mechanics 91/3 (2011), 179-191

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Questions:

How to choose reduced dimension r? What is the error made by this approximation? How reduced dimension r and the error depend on parameters v?

Answers:

For the reduced dimension r we use approximation derived for damping of all eigenfrequencies ³ and for damping only selected eigenfrequencies ⁴. The error and eigenvalue approximation will be presented.

³P. Benner, Z. Tomljanović, N. Truhar, Dimension reduction for damping optimization in linear vibrating system, Journal of Applied Mathematics and Mechanics 91/3 (2011), 179-191

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Questions:

How to choose reduced dimension r? What is the error made by this approximation? How reduced dimension r and the error depend on parameters v?

Answers:

For the reduced dimension r we use approximation derived for damping of all eigenfrequencies ³ and for damping only selected eigenfrequencies ⁴. The error and eigenvalue approximation will be presented.

³P. Benner, Z. Tomljanović, N. Truhar, Dimension reduction for damping optimization in linear vibrating system, Journal of Applied Mathematics and Mechanics 91/3 (2011), 179-191

⁴P. Benner, Z. Tomljanović, N. Truhar, Optimal Damping of Selected Eigenfrequencies Using Dimension Reduction, Numerical Linear Algebra with Applications 20/1 (2013), 1-17

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Questions:

How to choose reduced dimension r? What is the error made by this approximation? How reduced dimension r and the error depend on parameters v?

Answers:

For the reduced dimension r we use approximation derived for damping of all eigenfrequencies ³ and for damping only selected eigenfrequencies ⁴. The error and eigenvalue approximation will be presented.

³P. Benner, Z. Tomljanović, N. Truhar, Dimension reduction for damping optimization in linear vibrating system, Journal of Applied Mathematics and Mechanics 91/3 (2011), 179-191

⁴P. Benner, Z. Tomljanović, N. Truhar, Optimal Damping of Selected Eigenfrequencies Using Dimension Reduction, Numerical Linear Algebra with Applications 20/1 (2013), 1-17

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Essentially, modal approximation means:

The new approach for approximation of all eigenvalues

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Essentially, modal approximation means:

The new approach for approximation of all eigenvalues

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

The error bounds (tracking all eigenvalues)

We approximate matrix A_P by the matrix

$$\overline{A}_P = \begin{bmatrix} \overline{A}_{11} & 0\\ 0 & \overline{A}_{22} \end{bmatrix},$$

with

$$\begin{split} \overline{A}_{11} &= \widetilde{A}_P(1:2r,1:2r) \,, \\ \overline{A}_{22} &= \bigoplus_{i=r+1}^n \Psi^J_{w(i)} \,, \quad \text{where} \quad \Psi^J_i = \begin{bmatrix} 0 & \omega_i \\ -\omega_i & -\gamma_i - C_{ii} \end{bmatrix} . \end{split}$$

The matrix Ψ_i^J has eigenvalues

$$\widetilde{\lambda} = \frac{-\gamma_i - C_{ii} \pm \sqrt{(\gamma_i + C_{ii})^2 - 4\omega_i^2}}{2} \quad \text{for } i = r + 1, \dots, n,$$

where $C_{ii} = \sum_{i=1}^k v_i \Phi(:, i)^T C_i \Phi(:, i)$ and $\gamma_i = \alpha \omega_i$.

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

The error bounds (tracking all eigenvalues)

We approximate matrix \widetilde{A}_P by the matrix

$$\overline{A}_P = \begin{bmatrix} \overline{A}_{11} & 0\\ 0 & \overline{A}_{22} \end{bmatrix},$$

with

$$\begin{split} \overline{A}_{11} &= \widetilde{A}_P(1:2r,1:2r) \,, \\ \overline{A}_{22} &= \bigoplus_{i=r+1}^n \Psi^J_{w(i)} \,, \quad \text{where} \quad \Psi^J_i = \begin{bmatrix} 0 & \omega_i \\ -\omega_i & -\gamma_i - C_{ii} \end{bmatrix} . \end{split}$$

The matrix Ψ_i^J has eigenvalues

$$\widetilde{\lambda} = \frac{-\gamma_i - C_{ii} \pm \sqrt{(\gamma_i + C_{ii})^2 - 4\omega_i^2}}{2} \quad \text{for } i = r+1, \dots, n,$$

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

The error bounds (tracking all eigenvalues)

We approximate matrix \widetilde{A}_P by the matrix

$$\overline{A}_P = \begin{bmatrix} \overline{A}_{11} & 0\\ 0 & \overline{A}_{22} \end{bmatrix},$$

with

$$\begin{split} \overline{A}_{11} &= \widetilde{A}_P(1:2r,1:2r) \,, \\ \overline{A}_{22} &= \bigoplus_{i=r+1}^n \Psi^J_{w(i)} \,, \quad \text{where} \quad \Psi^J_i = \begin{bmatrix} 0 & \omega_i \\ -\omega_i & -\gamma_i - C_{ii} \end{bmatrix} . \end{split}$$

The matrix Ψ_i^J has eigenvalues

$$\widetilde{\lambda} = \frac{-\gamma_i - C_{ii} \pm \sqrt{(\gamma_i + C_{ii})^2 - 4\omega_i^2}}{2} \quad \text{for } i = r+1, \dots, n,$$

where
$$C_{ii} = \sum_{i}^{k} v_i \Phi(:,i)^T C_i \Phi(:,i)$$
 and $\gamma_i = \alpha \omega_i$

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Moreover, we need to diagonalize all two-by-two matrices $\Psi_{w(i)}^J$. We assume that $(\gamma_w(i) + C_{w(i)w(i)})^2 - 4\omega_{w(i)}^2 \neq 0$; thus matrices $Y_{r+1,r+1}, \ldots, Y_{n,n}$ diagonalize $\Psi_{w(i)}^J$.

$$\Psi_{w(i)}^{J} = Y_{ii} \operatorname{diag}(\lambda_{2i-1}, \lambda_{2i}) Y_{ii}^{-1}, \quad \forall i = r+1, \dots, n.$$

Then, using a block diagonal matrix

$$\hat{X} = \begin{bmatrix} X_{11} & 0\\ 0 & \bigoplus_{i=1}^{n-k} Y_{ii} \end{bmatrix}$$

we obtain

$$\hat{A}_P = \hat{X}^{-1} \overline{A}_P \hat{X} = \begin{bmatrix} \Lambda_{11} & X_{11}^{-1} \overline{A}_{12} \bigoplus_{i=1}^{n-k} Y_{ii} \\ \left(\bigoplus_{i=r+1}^n Y_{ii} \right)^{-1} \overline{A}_{21} X_{11} & A_Y \end{bmatrix},$$

with

$$A_Y = \left(\bigoplus_{i=r+1}^n Y_{ii}\right)^{-1} \overline{A}_{22} \bigoplus_{i=r+1}^n Y_{ii}$$

Here we apply the Gershgorin theorem.

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Moreover, we need to diagonalize all two-by-two matrices $\Psi_{w(i)}^J$. We assume that $(\gamma_w(i) + C_{w(i)w(i)})^2 - 4\omega_{w(i)}^2 \neq 0$; thus matrices $Y_{r+1,r+1}, \ldots, Y_{n,n}$ diagonalize $\Psi_{w(i)}^J$.

$$\Psi_{w(i)}^{J} = Y_{ii} \operatorname{diag}(\lambda_{2i-1}, \lambda_{2i}) Y_{ii}^{-1}, \quad \forall i = r+1, \dots, n.$$

Then, using a block diagonal matrix

$$\hat{X} = \begin{bmatrix} X_{11} & 0\\ 0 & \bigoplus_{i=1}^{n-k} Y_{ii} \end{bmatrix}$$

we obtain

$$\hat{A}_P = \hat{X}^{-1} \overline{A}_P \hat{X} = \begin{bmatrix} \Lambda_{11} & X_{11}^{-1} \overline{A}_{12} \bigoplus_{i=1}^{n-k} Y_{ii} \\ \left(\bigoplus_{i=r+1}^n Y_{ii} \right)^{-1} \overline{A}_{21} X_{11} & A_Y \end{bmatrix},$$

with

$$A_Y = \left(\bigoplus_{i=r+1}^n Y_{ii}\right)^{-1} \overline{A}_{22} \bigoplus_{i=r+1}^n Y_{ii}$$

Here we apply the Gershgorin theorem.

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Moreover, we need to diagonalize all two-by-two matrices $\Psi_{w(i)}^J$. We assume that $(\gamma_w(i) + C_{w(i)w(i)})^2 - 4\omega_{w(i)}^2 \neq 0$; thus matrices $Y_{r+1,r+1}, \ldots, Y_{n,n}$ diagonalize $\Psi_{w(i)}^J$.

$$\Psi_{w(i)}^{J} = Y_{ii} \operatorname{diag}(\lambda_{2i-1}, \lambda_{2i}) Y_{ii}^{-1}, \quad \forall i = r+1, \dots, n.$$

Then, using a block diagonal matrix

$$\hat{X} = \begin{bmatrix} X_{11} & 0\\ 0 & \bigoplus_{i=1}^{n-k} Y_{ii} \end{bmatrix}$$

we obtain

$$\hat{A}_P = \hat{X}^{-1} \overline{A}_P \hat{X} = \begin{bmatrix} \Lambda_{11} & X_{11}^{-1} \overline{A}_{12} \bigoplus_{i=1}^{n-k} Y_{ii} \\ \left(\bigoplus_{i=r+1}^n Y_{ii} \right)^{-1} \overline{A}_{21} X_{11} & A_Y \end{bmatrix},$$

with

$$A_Y = \left(\bigoplus_{i=r+1}^n Y_{ii}\right)^{-1} \overline{A}_{22} \bigoplus_{i=r+1}^n Y_{ii}$$

Here we apply the Gershgorin theorem.

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Gerschgorin type bound gives:

$$\begin{aligned} |\widetilde{\lambda}_{i} - \lambda_{\pi(i)}(\widehat{A}_{P})| &\leq \sum_{j=r+1} \left| (X_{11}^{-1}\widetilde{A}_{12} \oplus_{l=r+1}^{n} Y_{ll})_{ij} \right|, \quad i = 1, \dots, 2r \\ |\widetilde{\lambda}_{2i-1} - \lambda_{\pi(i)}(\widehat{A}_{P})| &\leq \sum_{j=1}^{2r} \left| \left((\oplus_{l=r+1}^{n} Y_{ll})^{-1} \overline{A}_{21} X_{11} \right)_{2i-2r-1,j} \right| \\ &+ \sum_{\substack{j=1, \\ j \neq 2i-2r-1}}^{n-2r} |(A_{Y})_{2i-2r-1,j}|, \quad i = r+1, \dots, n, \\ |\widetilde{\lambda}_{2i} - \lambda_{\pi(i)}(\widehat{A}_{P})| &\leq \sum_{j=1}^{2r} \left| \left((\oplus_{l=r+1}^{n} Y_{ll})^{-1} \overline{A}_{21} X_{11} \right)_{2i-2r,j} \right| \\ &+ \sum_{\substack{j=1, \\ i\neq 2i-2r}}^{n-2r} |(A_{Y})_{2i-2r,j}|, \quad i = r+1, \dots, n, \end{aligned}$$

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Gerschgorin type bound gives:

$$\begin{aligned} |\widetilde{\lambda}_{i} - \lambda_{\pi(i)}(\widehat{A}_{P})| &\leq \sum_{j=r+1}^{2n} \left| (X_{11}^{-1} \widetilde{A}_{12} \oplus_{l=r+1}^{n} Y_{ll})_{ij} \right|, \quad i = 1, \dots, 2r, \\ \widetilde{\lambda}_{2i-1} - \lambda_{\pi(i)}(\widehat{A}_{P})| &\leq \sum_{j=1}^{2r} \left| \left((\oplus_{l=r+1}^{n} Y_{ll})^{-1} \overline{A}_{21} X_{11} \right)_{2i-2r-1,j} \right| \end{aligned}$$

+
$$\sum_{\substack{j=1,\ j\neq 2i-2r-1}}^{n-2r} |(A_Y)_{2i-2r-1,j}|, \quad i=r+1,\ldots,n,$$

$$|\widetilde{\lambda}_{2i} - \lambda_{\pi(i)}(\widehat{A}_P)| \leq \sum_{j=1}^{2r} \left| \left(\left(\bigoplus_{l=r+1}^n Y_{ll} \right)^{-1} \overline{A}_{21} X_{11} \right)_{2i-2r,j} \right|$$

+
$$\sum_{\substack{j=1\\j\neq 2i-2r}}^{n-2r} |(A_Y)_{2i-2r,j}|, \quad i = r+1,\dots,n,$$

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Gerschgorin type bound gives:

$$|\widetilde{\lambda}_{i} - \lambda_{\pi(i)}(\widehat{A}_{P})| \leq \sum_{j=r+1}^{2n} \left| (X_{11}^{-1} \widetilde{A}_{12} \oplus_{l=r+1}^{n} Y_{ll})_{ij} \right|, \quad i = 1, \dots, 2r,$$

$$|\tilde{\lambda}_{2i-1} - \lambda_{\pi(i)}(\hat{A}_P)| \le \sum_{j=1}^{2r} \left| \left(\left(\bigoplus_{l=r+1}^n Y_{ll} \right)^{-1} \overline{A}_{21} X_{11} \right)_{2i-2r-1,j} \right|$$

+
$$\sum_{\substack{j=1,\ j\neq 2i-2r-1}}^{n-2r} |(A_Y)_{2i-2r-1,j}|, \quad i=r+1,\ldots,n,$$

$$|\tilde{\lambda}_{2i} - \lambda_{\pi(i)}(\hat{A}_P)| \le \sum_{j=1}^{2r} \left| \left(\left(\bigoplus_{l=r+1}^n Y_{ll} \right)^{-1} \overline{A}_{21} X_{11} \right)_{2i-2r,j} \right|$$

+
$$\sum_{\substack{j=1\\j\neq 2i-2r}}^{n-2r} |(A_Y)_{2i-2r,j}|, \quad i = r+1,\dots,n,$$

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Approximation of the selected eigenvalues

Zoran Tomljanović

Approximation bounds for parameter dependent quadratic eigenvalue problem

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Approximation of the selected eigenvalues Idea:

Zoran Tomljanović

Approximation bounds for parameter dependent quadratic eigenvalue problem

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Approximation of the selected eigenvalues Idea:

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Approximation of the selected eigenvalues Idea:

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

We approximate A, with $\overline{A}_P = \begin{bmatrix} A_{11} & 0 \\ 0 & \widetilde{A}_{22} \end{bmatrix}$, $\widetilde{A}_{11} = A_P(1:2r,1:2r)$,

and
$$\widetilde{A}_{22} = A_P(2r+1:2n,2r:2n)$$
.

If $\eta_2(\widetilde{\lambda}_i) = \min_{\mu \in \text{eig}(\widetilde{A}_{22})} |\widetilde{\lambda}_i - \mu| > 0$ with matrices X_{11}, Y_{11} which diagonalise $\widetilde{A}_{11}, \widetilde{A}_{22}$, resp., we have that ⁵

$$|\widetilde{\lambda}_i - \lambda_{\pi(i)}| \le \kappa_2(X_{11})\kappa_2(Y_{11})\frac{\|\widetilde{A}_{12}\|_2\|\widetilde{A}_{21}\|_2}{\eta_2(\widetilde{\lambda}_i)}, \qquad (1)$$

Gerschgorin bound:

$$|\widetilde{\lambda}_{i} - \lambda_{\pi(i)}(\widehat{A}_{P})| \leq \sum_{j=1}^{2n-2r} |(X_{11}^{-1}\widetilde{A}_{12})_{ij}|, \qquad (2)$$

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

We approximate A, with $\overline{A}_P = \begin{bmatrix} \widetilde{A}_{11} & 0 \\ 0 & \widetilde{A}_{22} \end{bmatrix}$, $\widetilde{A}_{11} = A_P(1:2r,1:2r)$,

and
$$\widetilde{A}_{22} = A_P(2r+1:2n,2r:2n)$$
.

If $\eta_2(\widetilde{\lambda}_i) = \min_{\mu \in eig(\widetilde{A}_{22})} |\widetilde{\lambda}_i - \mu| > 0$ with matrices X_{11}, Y_{11} which diagonalise $\widetilde{A}_{11}, \widetilde{A}_{22}$, resp., we have that ⁵

$$|\widetilde{\lambda}_i - \lambda_{\pi(i)}| \le \kappa_2(X_{11})\kappa_2(Y_{11})\frac{\|\widetilde{A}_{12}\|_2\|\widetilde{A}_{21}\|_2}{\eta_2(\widetilde{\lambda}_i)}, \qquad (1)$$

Gerschgorin bound:

$$|\tilde{\lambda}_i - \lambda_{\pi(i)}(\hat{A}_P)| \le \sum_{j=1}^{2n-2r} |(X_{11}^{-1}\tilde{A}_{12})_{ij}|, \qquad (2)$$

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

We approximate
$$A$$
, with $\overline{A}_P = \begin{bmatrix} \widetilde{A}_{11} & 0 \\ 0 & \widetilde{A}_{22} \end{bmatrix}$, $\widetilde{A}_{11} = A_P(1:2r,1:2r)$,

and
$$\widetilde{A}_{22} = A_P(2r+1:2n,2r:2n)$$
.

If $\eta_2(\widetilde{\lambda}_i) = \min_{\mu \in eig(\widetilde{A}_{22})} |\widetilde{\lambda}_i - \mu| > 0$ with matrices X_{11} , Y_{11} which diagonalise \widetilde{A}_{11} , \widetilde{A}_{22} , resp., we have that ⁵

$$|\widetilde{\lambda}_i - \lambda_{\pi(i)}| \le \kappa_2(X_{11})\kappa_2(Y_{11})\frac{\|\widetilde{A}_{12}\|_2\|\widetilde{A}_{21}\|_2}{\eta_2(\widetilde{\lambda}_i)}, \qquad (1)$$

Gerschgorin bound:

$$|\tilde{\lambda}_{i} - \lambda_{\pi(i)}(\hat{A}_{P})| \leq \sum_{j=1}^{2n-2r} |(X_{11}^{-1}\tilde{A}_{12})_{ij}|, \qquad (2)$$

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

We approximate
$$A$$
, with $\overline{A}_P = \begin{bmatrix} \widetilde{A}_{11} & 0 \\ 0 & \widetilde{A}_{22} \end{bmatrix}$, $\widetilde{A}_{11} = A_P(1:2r,1:2r)$,

and
$$\widetilde{A}_{22} = A_P(2r+1:2n,2r:2n)$$
.

If $\eta_2(\widetilde{\lambda}_i) = \min_{\mu \in \operatorname{eig}(\widetilde{A}_{22})} |\widetilde{\lambda}_i - \mu| > 0$ with matrices X_{11} , Y_{11} which diagonalise \widetilde{A}_{11} , \widetilde{A}_{22} , resp., we have that ⁵

$$|\widetilde{\lambda}_i - \lambda_{\pi(i)}| \le \kappa_2(X_{11})\kappa_2(Y_{11})\frac{\|\widetilde{A}_{12}\|_2\|\widetilde{A}_{21}\|_2}{\eta_2(\widetilde{\lambda}_i)},$$
(1)

Gerschgorin bound: $|\widetilde{\lambda}_i - \lambda_{\pi(i)}(\widehat{A}_P)| \leq \sum_{j=1}^{2n-2r} |(X_{11}^{-1}\widetilde{A}_{12})_{ij}|, \qquad (2)$

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

We approximate
$$A$$
, with $\overline{A}_P = \begin{bmatrix} \widetilde{A}_{11} & 0 \\ 0 & \widetilde{A}_{22} \end{bmatrix}$, $\widetilde{A}_{11} = A_P(1:2r,1:2r)$,

and
$$\widetilde{A}_{22} = A_P(2r+1:2n,2r:2n)$$
.

If $\eta_2(\widetilde{\lambda}_i) = \min_{\mu \in \operatorname{eig}(\widetilde{A}_{22})} |\widetilde{\lambda}_i - \mu| > 0$ with matrices X_{11} , Y_{11} which diagonalise \widetilde{A}_{11} , \widetilde{A}_{22} , resp., we have that ⁵

$$|\widetilde{\lambda}_i - \lambda_{\pi(i)}| \le \kappa_2(X_{11})\kappa_2(Y_{11})\frac{\|\widetilde{A}_{12}\|_2\|\widetilde{A}_{21}\|_2}{\eta_2(\widetilde{\lambda}_i)},$$
(1)

Gerschgorin bound:

$$|\widetilde{\lambda}_{i} - \lambda_{\pi(i)}(\widehat{A}_{P})| \leq \sum_{j=1}^{2n-2r} |(X_{11}^{-1}\widetilde{A}_{12})_{ij}|, \qquad (2)$$

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Example I: Tracking all eigenvalues

We consider oscillator ladder with two dampers, with configuration

$$n = 1000; \quad k_i = 1, \quad \forall i; \quad m_i = \begin{cases} 1200 - 2i, & i = 1, \dots, 200, \\ 4i, & i = 201, \dots, n. \end{cases}$$
$$D = C_u + C_{ext}, \quad \text{with}, \quad C_{ext} = v e_{600} e_{600}^T + \frac{v}{4} e_{900} e_{900}^T.$$

Figure: Relative error for v = 10 with r = 416.

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Eigenvalue behaviour for (v/4, v), $v = 1, \ldots, 100$.

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Example II: Tracking selected eigenvalues

Consider 3d + 1-mass oscillator

Figure: 3d + 1-mass oscillator with 3 dampers

$$d = 400, \quad n = 3d + 1 = 1201,$$

$$m_k = k, \quad k = 1, \dots, n,$$

$$k_1 = 1, \quad k_2 = 20, \quad k_3 = 40, \quad k_4 = 50.$$

$$D = C_u + C_{ext}, \quad \text{with}, \quad C_{ext} = ve_{350}e_{350}^T + ve_{600}e_{600}^T + ve_{1000}e_{1000}^T.$$

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

Example II: Tracking selected eigenvalues

Consider 3d + 1-mass oscillator

Figure: 3d + 1-mass oscillator with 3 dampers

$$\begin{split} d &= 400, \quad n = 3d + 1 = 1201, \\ m_k &= k, \quad k = 1, \dots, n, \\ k_1 &= 1, \quad k_2 = 20, \quad k_3 = 40, \quad k_4 = 50. \\ \mathcal{D} &= C_u + C_{ext}, \quad \text{with}, \quad C_{ext} = v e_{350} e_{350}^T + v e_{600} e_{600}^T + v e_{1000} e_{1000}^T. \end{split}$$

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

3d+1-mass oscillator

Tracking all eigenvalues Tracking selected eigenvalues Numerical experiments

3d + 1-mass oscillator

Relative error for v = 2, r = 60.

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

Bounds on subspaces

Let x_1, \ldots, x_n be *n* linearly independent right (left) eigenvectors, and let $\lambda_1, \ldots, \lambda_n$ be corresponding eigenvalues.

 $X = [X_1, X_2], X_1 = [x_1, \dots, x_k], X_2 = [x_{k+1}, \dots, x_n],$ $\Lambda = \operatorname{diag}(\Lambda_1, \Lambda_2), \Lambda_1 = \operatorname{diag}(\lambda_1, \dots, \lambda_k), \Lambda_2 = \operatorname{diag}(\lambda_{k+1}, \dots, \lambda_n).$

corresponding perturbed quantities will be denoted by \sim . **Plan:** derive an upper bound for the norm difference:

$$||X_2^*M\widetilde{X}_1||_F^2 - ||X_2^*MX_1||_F^2|.$$

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

Bounds on subspaces

Let x_1, \ldots, x_n be *n* linearly independent right (left) eigenvectors, and let $\lambda_1, \ldots, \lambda_n$ be corresponding eigenvalues. Interested in behaviour of x_1, \ldots, x_k , which belong to $\lambda_1, \ldots, \lambda_k$,

$$X = [X_1, X_2], X_1 = [x_1, \dots, x_k], X_2 = [x_{k+1}, \dots, x_n],$$

= diag(Λ_1, Λ_2), Λ_1 = diag($\lambda_1, \dots, \lambda_k$), Λ_2 = diag($\lambda_{k+1}, \dots, \lambda_n$).

corresponding perturbed quantities will be denoted by \sim . **Plan:** derive an upper bound for the norm difference:

$$||X_2^*M\widetilde{X}_1||_F^2 - ||X_2^*MX_1||_F^2|.$$

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

Bounds on subspaces

Let x_1, \ldots, x_n be *n* linearly independent right (left) eigenvectors, and let $\lambda_1, \ldots, \lambda_n$ be corresponding eigenvalues.

Interested in behaviour of x_1, \ldots, x_k , which belong to $\lambda_1, \ldots, \lambda_k$,

$$X = [X_1, X_2], X_1 = [x_1, \dots, x_k], X_2 = [x_{k+1}, \dots, x_n],$$

= diag(Λ_1, Λ_2), Λ_1 = diag($\lambda_1, \dots, \lambda_k$), Λ_2 = diag($\lambda_{k+1}, \dots, \lambda_n$).

corresponding perturbed quantities will be denoted by \sim . **Plan:** derive an upper bound for the norm difference:

$$||X_2^*M\widetilde{X}_1||_F^2 - ||X_2^*MX_1||_F^2|.$$

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

Bounds on subspaces

Let x_1, \ldots, x_n be *n* linearly independent right (left) eigenvectors, and let $\lambda_1, \ldots, \lambda_n$ be corresponding eigenvalues. Interested in behaviour of x_1, \ldots, x_k , which belong to $\lambda_1, \ldots, \lambda_k$,

 $X = [X_1, X_2], X_1 = [x_1, \dots, x_k], X_2 = [x_{k+1}, \dots, x_n],$ $\Lambda = \operatorname{diag}(\Lambda_1, \Lambda_2), \Lambda_1 = \operatorname{diag}(\lambda_1, \dots, \lambda_k), \Lambda_2 = \operatorname{diag}(\lambda_{k+1}, \dots, \lambda_n).$

corresponding perturbed quantities will be denoted by \sim . **Plan:** derive an upper bound for the norm difference:

$$||X_2^*M\widetilde{X}_1||_F^2 - ||X_2^*MX_1||_F^2|.$$
Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

Bounds on subspaces

Let x_1, \ldots, x_n be *n* linearly independent right (left) eigenvectors, and let $\lambda_1, \ldots, \lambda_n$ be corresponding eigenvalues. Interested in behaviour of x_1, \ldots, x_k , which belong to $\lambda_1, \ldots, \lambda_k$,

$$X = [X_1, X_2], X_1 = [x_1, \dots, x_k], X_2 = [x_{k+1}, \dots, x_n],$$

$$\Lambda = \operatorname{diag}(\Lambda_1, \Lambda_2), \Lambda_1 = \operatorname{diag}(\lambda_1, \dots, \lambda_k), \Lambda_2 = \operatorname{diag}(\lambda_{k+1}, \dots, \lambda_n).$$

corresponding perturbed quantities will be denoted by \sim . Plan: derive an upper bound for the norm difference:

$$||X_2^*M\widetilde{X}_1||_F^2 - ||X_2^*MX_1||_F^2|$$
.

Measure for the difference in M-scalar product of two non M-orthogonal bases.

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

Bounds on subspaces

Let x_1, \ldots, x_n be *n* linearly independent right (left) eigenvectors, and let $\lambda_1, \ldots, \lambda_n$ be corresponding eigenvalues. Interested in behaviour of x_1, \ldots, x_k , which belong to $\lambda_1, \ldots, \lambda_k$,

$$X = [X_1, X_2], X_1 = [x_1, \dots, x_k], X_2 = [x_{k+1}, \dots, x_n],$$

$$\Lambda = \operatorname{diag}(\Lambda_1, \Lambda_2), \Lambda_1 = \operatorname{diag}(\lambda_1, \dots, \lambda_k), \Lambda_2 = \operatorname{diag}(\lambda_{k+1}, \dots, \lambda_n).$$

corresponding perturbed quantities will be denoted by \sim . **Plan:** derive an upper bound for the norm difference:

$$\left\| \|X_2^* M \widetilde{X}_1\|_F^2 - \|X_2^* M X_1\|_F^2 \right\|.$$

Measure for the difference in M-scalar product of two non M-orthogonal bases.

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

Bounds on subspaces

Let x_1, \ldots, x_n be *n* linearly independent right (left) eigenvectors, and let $\lambda_1, \ldots, \lambda_n$ be corresponding eigenvalues. Interested in behaviour of x_1, \ldots, x_k , which belong to $\lambda_1, \ldots, \lambda_k$,

$$X = [X_1, X_2], X_1 = [x_1, \dots, x_k], X_2 = [x_{k+1}, \dots, x_n],$$

$$\Lambda = \operatorname{diag}(\Lambda_1, \Lambda_2), \Lambda_1 = \operatorname{diag}(\lambda_1, \dots, \lambda_k), \Lambda_2 = \operatorname{diag}(\lambda_{k+1}, \dots, \lambda_n).$$

corresponding perturbed quantities will be denoted by \sim . **Plan:** derive an upper bound for the norm difference:

$$\left\| \|X_2^* M \widetilde{X}_1\|_F^2 - \|X_2^* M X_1\|_F^2 \right\|.$$

Measure for the difference in $M\mbox{-scalar}$ product of two non $M\mbox{-orthogonal}$ bases.

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

We consider QEP and corresponding perturbed QEP $(\lambda^2 M + \lambda D + K) x = 0$

$$\left(\widetilde{\lambda}^2(M+\delta M)+\widetilde{\lambda}(D+\delta D)+(K+\delta K)\right)\widetilde{x}=0$$

Now, the following equalities hold :

$$\overline{\Lambda}^2 X^* M + \overline{\Lambda} X^* D + X^* K = 0,$$
$$M X \Lambda^2 + D X \Lambda + K X = 0.$$

By multiplying with X and X^* from (2, 1)-th blocks we obtain:

$$\overline{\Lambda}_2^2 X_2^* M X_1 + \overline{\Lambda}_2 X_2^* D X_1 + X_2^* K X_1 = 0,$$

$$X_2^* M X_1 \Lambda_1^2 + X_2^* D X_1 \Lambda_1 + X_2^* K X_1 = 0.$$

$$(X_2^* M X_1)_{ij} = -\frac{(X_2^* D X_1)_{ij}}{(\overline{\Lambda}_2)_{ii} + (\Lambda_1)_{jj}},$$

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

We consider QEP and corresponding perturbed QEP

$$(\lambda^2 M + \lambda D + K)x = 0$$
$$\left(\widetilde{\lambda}^2 (M + \delta M) + \widetilde{\lambda} (D + \delta D) + (K + \delta K)\right)\widetilde{x} = 0$$

Now, the following equalities hold :

$$\overline{\Lambda}^2 X^* M + \overline{\Lambda} X^* D + X^* K = 0,$$
$$M X \Lambda^2 + D X \Lambda + K X = 0.$$

By multiplying with X and X^* from (2, 1)-th blocks we obtain:

$$\overline{\Lambda}_2^2 X_2^* M X_1 + \overline{\Lambda}_2 X_2^* D X_1 + X_2^* K X_1 = 0,$$

$$X_2^* M X_1 \Lambda_1^2 + X_2^* D X_1 \Lambda_1 + X_2^* K X_1 = 0.$$

$$(X_2^* M X_1)_{ij} = -\frac{(X_2^* D X_1)_{ij}}{(\overline{\Lambda}_2)_{ii} + (\Lambda_1)_{jj}},$$

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

We consider QEP and corresponding perturbed QEP

$$(\lambda^2 M + \lambda D + K)x = 0$$
$$\left(\widetilde{\lambda}^2 (M + \delta M) + \widetilde{\lambda} (D + \delta D) + (K + \delta K)\right)\widetilde{x} = 0$$

Now, the following equalities hold :

$$\overline{\Lambda}^2 X^* M + \overline{\Lambda} X^* D + X^* K = 0,$$
$$M X \Lambda^2 + D X \Lambda + K X = 0.$$

By multiplying with X and X^{\ast} from $(2,1)\mbox{-th}$ blocks we obtain:

$$\overline{\Lambda_2}^2 X_2^* M X_1 + \overline{\Lambda_2} X_2^* D X_1 + X_2^* K X_1 = 0,$$

$$X_2^* M X_1 \Lambda_1^2 + X_2^* D X_1 \Lambda_1 + X_2^* K X_1 = 0.$$

$$(X_2^*MX_1)_{ij} = -\frac{(X_2^*DX_1)_{ij}}{(\overline{\Lambda}_2)_{ii} + (\Lambda_1)_{jj}},$$

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

We consider QEP and corresponding perturbed QEP

$$(\lambda^2 M + \lambda D + K)x = 0$$
$$\left(\widetilde{\lambda}^2 (M + \delta M) + \widetilde{\lambda} (D + \delta D) + (K + \delta K)\right)\widetilde{x} = 0$$

Now, the following equalities hold :

$$\begin{split} \overline{\Lambda}^2 X^* M + \overline{\Lambda} X^* D + X^* K &= 0, \\ M X \Lambda^2 + D X \Lambda + K X &= 0. \end{split}$$

By multiplying with X and X^{\ast} from $(2,1)\mbox{-th}$ blocks we obtain:

$$\overline{\Lambda_2}^2 X_2^* M X_1 + \overline{\Lambda_2} X_2^* D X_1 + X_2^* K X_1 = 0,$$

$$X_2^* M X_1 \Lambda_1^2 + X_2^* D X_1 \Lambda_1 + X_2^* K X_1 = 0.$$

$$(X_2^*MX_1)_{ij} = -\frac{(X_2^*DX_1)_{ij}}{(\overline{\Lambda}_2)_{ii} + (\Lambda_1)_{jj}},$$

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

Similarly from perturbed equation we obtain

$$\overline{\Lambda}_2^2 X_2^* M \widetilde{X}_1 + \overline{\Lambda}_2 X_2^* D \widetilde{X}_1 + X_2^* K \widetilde{X}_1 = 0, \qquad (3)$$

$$X_2^* \widetilde{M} \widetilde{X}_1 \widetilde{\Lambda}_1^2 + X_2^* \widetilde{D} \widetilde{X}_1 \widetilde{\Lambda}_1 + X_2^* \widetilde{K} \widetilde{X}_1 = 0.$$

From the above equalities, there follows:

$$(X_2^* M \widetilde{X}_1)_{ij} = -\frac{\left(X_2^* D \widetilde{X}_1\right)_{ij}}{(\overline{\Lambda}_2)_{ii} + (\widetilde{\Lambda}_1)_{jj}} + \frac{\left(X_2^* \delta M \widetilde{X}_1 \widetilde{\Lambda}_1^2\right)_{ij}}{(\overline{\Lambda}_2)_{ii}^2 + (\widetilde{\Lambda}_1)_{jj}^2} + \frac{\left(X_2^* \delta D \widetilde{X}_1 \widetilde{\Lambda}_1\right)_{ij}}{(\overline{\Lambda}_2)_{ii}^2 - (\widetilde{\Lambda}_1)_{jj}^2} + \frac{\left(X_2^* \delta K \widetilde{X}_1\right)_{ij}}{(\overline{\Lambda}_2)_{ii}^2 - (\widetilde{\Lambda}_1)_{jj}^2}.$$

$$(4)$$

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

Similarly from perturbed equation we obtain

$$\overline{\Lambda}_2^2 X_2^* M \widetilde{X}_1 + \overline{\Lambda}_2 X_2^* D \widetilde{X}_1 + X_2^* K \widetilde{X}_1 = 0, \qquad (3)$$

$$X_2^*\widetilde{M}\widetilde{X}_1\widetilde{\Lambda}_1^2 + X_2^*\widetilde{D}\widetilde{X}_1\widetilde{\Lambda}_1 + X_2^*\widetilde{K}\widetilde{X}_1 = 0.$$

From the above equalities, there follows:

$$(X_2^* M \widetilde{X}_1)_{ij} = -\frac{\left(X_2^* D \widetilde{X}_1\right)_{ij}}{(\overline{\Lambda}_2)_{ii} + (\widetilde{\Lambda}_1)_{jj}} + \frac{\left(X_2^* \delta M \widetilde{X}_1 \widetilde{\Lambda}_1^2\right)_{ij}}{(\overline{\Lambda}_2)_{ii}^2 + (\widetilde{\Lambda}_1)_{jj}^2} + \frac{\left(X_2^* \delta D \widetilde{X}_1 \widetilde{\Lambda}_1\right)_{ij}}{(\overline{\Lambda}_2)_{ii}^2 - (\widetilde{\Lambda}_1)_{jj}^2} + \frac{\left(X_2^* \delta K \widetilde{X}_1\right)_{ij}}{(\overline{\Lambda}_2)_{ii}^2 - (\widetilde{\Lambda}_1)_{jj}^2}.$$
(4)

$$\begin{aligned} & \text{Problem formulation} \\ & \text{Bounds on subspaces} \\ & \|\|X_2^*M\widetilde{X}_1\|_F^2 - \|X_2^*MX_1\|_F^2| \leq \left|\frac{\|X_2^*D\widetilde{X}_1\|_F^2}{\widetilde{rg}_0^2} - \frac{\|X_2DX_1\|_F^2}{|rg_0^2}\right| + \\ & +2\sum_{i,j} \left|\frac{\left(X_2^*D\widetilde{X}_1\right)_{ij}}{\widetilde{rg}_0} \left(\frac{\left(X_2^*\delta M\widetilde{X}_1\right)_{ij}}{rg_1} + \frac{\left(X_2^*\delta D\widetilde{X}_1\right)_{ij}}{rg_2} + \frac{\left(X_2^*\delta K\widetilde{X}_1\right)_{ij}}{rg_3}\right)\right| \\ & + \left|\left(\frac{\left(X_2^*\delta M\widetilde{X}_1\right)_{ij}}{rg_1} + \frac{\left(X_2^*\delta D\widetilde{X}_1\right)_{ij}}{rg_2} + \frac{\left(X_2^*\delta K\widetilde{X}_1\right)_{ij}}{rg_3}\right)^2\right|. \end{aligned}$$
Where gaps are given by $\widetilde{rg}_0 = \min_{\substack{i=1,\dots,n-k\\ j=1,\dots,k}} \left|(\Lambda_2)_{ii} + (\Lambda_1)_{jj}\right|, \qquad rg_1 = \min_{\substack{i=1,\dots,n-k\\ j=1,\dots,k}} \frac{\left|(\Lambda_2)_{ii}^2 - (\widetilde{\Lambda}_1)_{jj}^2\right|}{\left|(\widetilde{\Lambda}_1)_{jj}^2\right|}, \qquad rg_3 = \min_{\substack{i=1,\dots,n-k\\ j=1,\dots,k}} \left|(\Lambda_2)_{ii}^2 - (\widetilde{\Lambda}_1)_{jj}^2\right|. \end{aligned}$

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

Let M, D, K be simultaneously diagonalizable, this means that there exists a non singular matrix X such that

$$\begin{aligned} X^*MX &= \Psi_M \doteq \text{diag}(\psi_{(M,1)}, \psi_{(M,2)}, \dots, \psi_{(M,n)}), \\ X^*DX &= \Psi_D \doteq \text{diag}(\psi_{(D,1)}, \psi_{(D,2)}, \dots, \psi_{(D,n)}), \\ X^*KX &= \Psi_K \doteq \text{diag}(\psi_{(K,1)}, \psi_{(K,2)}, \dots, \psi_{(K,n)}). \end{aligned}$$

Let denote $Y^* = X^{-1}$ and decompose

$$X = [X_1, X_2], X_1 = [x_1, \dots, x_k], X_2 = [x_{k+1}, \dots, x_n],$$

$$Y = [Y_1, Y_2], Y_1 = [y_1, \dots, y_k], Y_2 = [y_{k+1}, \dots, y_n],$$

$$\Lambda = \operatorname{diag}(\Lambda_1, \Lambda_2), \Lambda_1 = \operatorname{diag}(\lambda_1, \dots, \lambda_k), \Lambda_2 = \operatorname{diag}(\lambda_{k+1}, \dots, \lambda_n).$$

We consider $\mathcal{X}_1 = \operatorname{span}(M^{1/2}X_1)$ and $\widetilde{\mathcal{X}}_1 = \operatorname{span}(M^{1/2}\widetilde{X}_1)$.

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

The columns of X and Y span the same subspaces, thus if we denote

$$[X_1, X_2] = [Q_1, Q_2] \begin{bmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{bmatrix},$$

Since, $Y_2^*X_1 = 0$, using

$$Y_2 = \hat{Q}_2 \hat{R}_2, \quad \hat{Q}_2^* Q_1 = 0,$$

it can be shown that [Stewart, Sun, Matrix Perturbation Theory, 90]

$$\sigma_{\min}(\hat{R}_2)\sigma_{\min}(R_{11})\|\hat{Q}_2^*\widetilde{Q}_1\|_F \le \|Y_2^*\widetilde{X}_1\|_F.$$

Using that $\sin \Theta(\mathcal{X}_1,\widetilde{\mathcal{X}}_1) = \|\hat{Q}_2^*\widetilde{Q}_1\|_F$ we have

$$\sin \Theta(\mathcal{X}_1, \widetilde{\mathcal{X}}_1) \le \frac{1}{\sigma_{\min}(\hat{R}_2)\sigma_{\min}(R_{11})} \|Y_2^* \widetilde{X}_1\|_F.$$

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

The columns of X and Y span the same subspaces, thus if we denote

$$[X_1, X_2] = [Q_1, Q_2] \begin{bmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{bmatrix},$$

Since, $Y_2^*X_1 = 0$, using

$$Y_2 = \hat{Q}_2 \hat{R}_2, \quad \hat{Q}_2^* Q_1 = 0,$$

it can be shown that [Stewart, Sun, Matrix Perturbation Theory, 90]

$$\sigma_{\min}(\hat{R}_2)\sigma_{\min}(R_{11})\|\hat{Q}_2^*\widetilde{Q}_1\|_F \le \|Y_2^*\widetilde{X}_1\|_F.$$

Using that $\sin\Theta(\mathcal{X}_1,\widetilde{\mathcal{X}}_1)=\|\hat{Q}_2^*\widetilde{Q}_1\|_F$ we have

$$\sin \Theta(\mathcal{X}_1, \widetilde{\mathcal{X}}_1) \leq \frac{1}{\sigma_{\min}(\hat{R}_2)\sigma_{\min}(R_{11})} \|Y_2^* \widetilde{X}_1\|_F.$$

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

The columns $x_k, k = 1, \dots, n$ are eigenvectors of QEP one can write $MX\Lambda^2 + DX\Lambda + KX = 0$ $\widetilde{M}\widetilde{X}\widetilde{\Lambda}^2 + \widetilde{D}\widetilde{X}\widetilde{\Lambda} + \widetilde{K}\widetilde{X} = 0$,

for some \widetilde{X} and corresponding perturbed eigenvalues $\widetilde{\Lambda}$. Multiplying the perturbed equation with X^* from left one gets:

$$\underbrace{X^*M}_{\Psi_M X^{-1}} \widetilde{X}\widetilde{\Lambda}^2 + \underbrace{X^*D}_{\Psi_D X^{-1}} \widetilde{X}\widetilde{\Lambda} + \underbrace{X^*K}_{\Psi_K X^{-1}} \widetilde{X} = -\left(X^*\delta M\widetilde{X}\widetilde{\Lambda}^2 + X^*\delta D\widetilde{X}\widetilde{\Lambda} + X^*\delta K\widetilde{X}\right)$$

Now, from the above equality for the (i, j) component holds:

$$(Y^*\widetilde{X})_{ij}(\psi_{(M,i)}\widetilde{\lambda}_j^2 + \psi_{(D,i)}\widetilde{\lambda}_j + \psi_{(K,i)}) = -\left(X^*_{(:,i)}\delta M\widetilde{X}_{(:,j)}\widetilde{\lambda}_j^2 + X^*_{(:,i)}\delta D\widetilde{X}_{(:,j)}\widetilde{\lambda}_j + X^*_{(:,i)}\delta K\widetilde{X}_{(:,j)}\right)$$

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

The columns $x_k, k = 1, \ldots, n$ are eigenvectors of QEP one can write $MX\Lambda^2 + DX\Lambda + KX = 0$ $\widetilde{M}\widetilde{X}\widetilde{\Lambda}^2 + \widetilde{D}\widetilde{X}\widetilde{\Lambda} + \widetilde{K}\widetilde{X} = 0$,

for some X and corresponding perturbed eigenvalues Λ . Multiplying the perturbed equation with X^* from left one gets:

$$\underbrace{X^*M}_{\Psi_M X^{-1}} \widetilde{X}\widetilde{\Lambda}^2 + \underbrace{X^*D}_{\Psi_D X^{-1}} \widetilde{X}\widetilde{\Lambda} + \underbrace{X^*K}_{\Psi_K X^{-1}} \widetilde{X} = -\left(X^*\delta M\widetilde{X}\widetilde{\Lambda}^2 + X^*\delta D\widetilde{X}\widetilde{\Lambda} + X^*\delta K\widetilde{X}\right)$$

Now, from the above equality for the $\left(i,j
ight)$ component holds:

$$\begin{aligned} (Y^*\widetilde{X})_{ij}(\psi_{(M,i)}\widetilde{\lambda}_j^2 + \psi_{(D,i)}\widetilde{\lambda}_j + \psi_{(K,i)}) \\ &= -\left(X^*_{(:,i)}\delta M\widetilde{X}_{(:,j)}\widetilde{\lambda}_j^2 + X^*_{(:,i)}\delta D\widetilde{X}_{(:,j)}\widetilde{\lambda}_j + X^*_{(:,i)}\delta K\widetilde{X}_{(:,j)}\right) \end{aligned}$$

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

The columns $x_k, k = 1, \ldots, n$ are eigenvectors of QEP one can write $MX\Lambda^2 + DX\Lambda + KX = 0$ $\widetilde{M}\widetilde{X}\widetilde{\Lambda}^2 + \widetilde{D}\widetilde{X}\widetilde{\Lambda} + \widetilde{K}\widetilde{X} = 0$,

for some \widetilde{X} and corresponding perturbed eigenvalues $\widetilde{\Lambda}$. Multiplying the perturbed equation with X^* from left one gets:

$$\underbrace{X^*M}_{\Psi_M X^{-1}} \widetilde{X} \widetilde{\Lambda}^2 + \underbrace{X^*D}_{\Psi_D X^{-1}} \widetilde{X} \widetilde{\Lambda} + \underbrace{X^*K}_{\Psi_K X^{-1}} \widetilde{X} = -\left(X^* \delta M \widetilde{X} \widetilde{\Lambda}^2 + X^* \delta D \widetilde{X} \widetilde{\Lambda} + X^* \delta K \widetilde{X}\right)$$

Now, from the above equality for the (i, j) component holds:

$$(Y^*\widetilde{X})_{ij}(\psi_{(M,i)}\widetilde{\lambda}_j^2 + \psi_{(D,i)}\widetilde{\lambda}_j + \psi_{(K,i)}) = -\left(X^*_{(:,i)}\delta M\widetilde{X}_{(:,j)}\widetilde{\lambda}_j^2 + X^*_{(:,i)}\delta D\widetilde{X}_{(:,j)}\widetilde{\lambda}_j + X^*_{(:,i)}\delta K\widetilde{X}_{(:,j)}\right)$$

 Problem formulation
 Bound for the norm difference

 Tracking eigenvalues
 Simultaneously diagonalizable case

 Bounds on subspaces
 Numerical experiments

Putting this altogether we can obtain upper bound for $\sin\Theta$

$$\sin \Theta(\mathcal{X}_1, \widetilde{\mathcal{X}}_1)^2 \le \frac{\frac{Err(\widetilde{X}_1, X_1)}{\sigma_{\min}(\widehat{R}_2)^2 \sigma_{\min}(R_{11})^2}}{\min_{\substack{1 \le j \le k \\ k+1 \le i \le n}} |\psi_{(M,i)}\widetilde{\lambda}_j^2 + \psi_{(D,i)}\widetilde{\lambda}_j + \psi_{(K,i)}|^2}$$

where $Err(\widetilde{X}_1, X_1) =$

$$\sum_{i=k+1}^{n}\sum_{j=1}^{k}\left|X_{(:,i)}^{*}\delta M\widetilde{X}_{(:,j)}\widetilde{\lambda}_{j}^{2}+X_{(:,i)}^{*}\delta D\widetilde{X}_{(:,j)}\widetilde{\lambda}_{j}+X_{(:,i)}^{*}\delta K\widetilde{X}_{(:,j)}\right|^{2}$$

In a case of $\delta M = \delta K = 0$, implies

$$\sin \Theta(\mathcal{X}_1, \widetilde{\mathcal{X}}_1)^2 \le \frac{\|X_2^* \delta D \widetilde{X}_1\|_F^2}{\sigma_{\min}(\hat{R}_2)^2 \sigma_{\min}(R_{11})^2 \min_{\substack{1 \le j \le k \\ k+1 \le i \le n}} \frac{|\psi_{(M,i)}(\widetilde{\lambda}_j - \lambda_i)(\widetilde{\lambda}_j - \overline{\lambda}_i)|^2}{|\widetilde{\lambda}_j|^2}}$$

 Problem formulation
 Bound for the norm difference

 Tracking eigenvalues
 Simultaneously diagonalizable case

 Bounds on subspaces
 Numerical experiments

Putting this altogether we can obtain upper bound for $\sin\Theta$

$$\sin \Theta(\mathcal{X}_1, \widetilde{\mathcal{X}}_1)^2 \le \frac{\frac{Err(X_1, X_1)}{\sigma_{\min}(\hat{R}_2)^2 \sigma_{\min}(R_{11})^2}}{\min_{\substack{1 \le j \le k \\ k+1 \le i \le n}} |\psi_{(M,i)} \widetilde{\lambda}_j^2 + \psi_{(D,i)} \widetilde{\lambda}_j + \psi_{(K,i)}|^2}$$

where $Err(\widetilde{X}_1, X_1) =$

$$\sum_{i=k+1}^{n}\sum_{j=1}^{k}\left|X_{(:,i)}^{*}\delta M\widetilde{X}_{(:,j)}\widetilde{\lambda}_{j}^{2}+X_{(:,i)}^{*}\delta D\widetilde{X}_{(:,j)}\widetilde{\lambda}_{j}+X_{(:,i)}^{*}\delta K\widetilde{X}_{(:,j)}\right|^{2}$$

In a case of $\delta M = \delta K = 0$, implies

$$\sin \Theta(\mathcal{X}_1, \widetilde{\mathcal{X}}_1)^2 \le \frac{\|X_2^* \delta D \widetilde{X}_1\|_F^2}{\sigma_{\min}(\hat{R}_2)^2 \sigma_{\min}(R_{11})^2 \min_{\substack{1 \le j \le k \\ k+1 \le i \le n}} \frac{|\psi_{(M,i)}(\widetilde{\lambda}_j - \lambda_i)(\widetilde{\lambda}_j - \overline{\lambda}_i)|^2}{|\widetilde{\lambda}_j|^2}}$$

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

We consider example with configuration

$$M = \operatorname{diag}(m_1, m_2, \dots, m_n), \quad m_i = 2i$$
$$K = \begin{pmatrix} 4k & -k & -k \\ -k & 4k & -k & -k \\ & \ddots & \ddots & \ddots \\ & -k & -k & 4k & -k \\ & & -k & -k & 4k \end{pmatrix} + K_0, \quad \text{with} \quad k = 0.1$$

 K_0 determines the above perturbation term in the matrix K, where $k_0 = 5 \cdot 10^{-8}$

$$K_{0}(45:55,45:55) = \begin{pmatrix} 2k_{0} & 0 & -k_{0} \\ 0 & 2k_{0} & 0 & -1k_{0} \\ -1k_{0} & 0 & 2k_{0} & 0 & -1k_{0} \\ & \ddots & \ddots & \ddots & \ddots \\ & & -1k_{0} & 0 & 2k_{0} & 0 \\ & & & & -1k_{0} & 0 & 2k_{0} \end{pmatrix}$$

.

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

For Λ_2 we have taken 20 eigenvalues with the largest imaginary part, while for Λ_1 we have chosen 80 eigenvalues that come from 160 eigenvalues with the smallest, but positive imaginary part .

case I

Perturbation in the damping matrix is given by

$$\delta D = \delta v \, e_{60} e_{60}^T + \delta v \, e_{70} e_{70}^T \quad \text{with} \quad \delta v = 5 \cdot 10^{-6}$$

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

case II

$$\delta D = \delta v \, e_j e_j^T$$
 with $\delta v = 5 \cdot 10^{-4}$.

for positions j = 51, 52, ..., 70.

Figure: Numerical results for upper and lower bounds for $\sin\Theta(\mathcal{X}_1,\widetilde{\mathcal{X}}_1)$

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

Summary and outlook

1. within parameter dependent QEP:

The extension and application of modal approximation on efficient approximation of eigenvalues $\lambda_i(v)$ for QEP $(\mu^2 M + \mu C(v) + K)x(v) = 0.$ \diamond for all i = 1, ..., n and modest $0 < v \le V_M.$ \diamond for the part of spectrum, i.e. $r_0 \le i \le r_0 + k$ and mode

2. within perturbation theory:

 $\diamond \text{ bound for the norm difference } \left| \|X_2^* M \widetilde{X}_1\|_F^2 - \|X_2^* M X_1\|_F^2 \right|$ $\diamond \sin \Theta(\mathcal{X}_1, \widetilde{\mathcal{X}}_1) \text{ bound, } \mathcal{X}_1 = \operatorname{span}(M^{1/2} X_1), \widetilde{\mathcal{X}}_1 = \operatorname{span}(M^{1/2} \widetilde{X}_1).$

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

Summary and outlook

1. within parameter dependent QEP:

The extension and application of modal approximation on

efficient approximation of eigenvalues $\lambda_i(v)$ for QEP $(\mu^2 M + \mu C(v) + K)x(v) = 0.$

for all $i = 1, \ldots, n$ and modest $0 < v \le V_M$.

 \diamondsuit for the part of spectrum, i.e. $r_0 \leq i \leq r_0 + k$ and modest $0 < v \leq V_M.$

2. within perturbation theory:

 $\diamond \text{ bound for the norm difference } \left\| \|X_2^* M \widetilde{X}_1\|_F^2 - \|X_2^* M X_1\|_F^2 \right|$ $\diamond \sin \Theta(\mathcal{X}_1, \widetilde{\mathcal{X}}_1) \text{ bound,} \\ \mathcal{X}_1 = \operatorname{span}(M^{1/2} X_1), \\ \widetilde{\mathcal{X}}_1 = \operatorname{span}(M^{1/2} \widetilde{X}_1).$

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

Summary and outlook

1. within parameter dependent QEP:

The extension and application of modal approximation on

efficient approximation of eigenvalues $\lambda_i(v)$ for QEP $(\mu^2 M + \mu C(v) + K)x(v) = 0.$

for all $i = 1, \ldots, n$ and modest $0 < v \le V_M$.

 \diamondsuit for the part of spectrum, i.e. $r_0 \leq i \leq r_0 + k$ and modest $0 < v \leq V_M.$

2. within perturbation theory:

 $\diamond \text{ bound for the norm difference } \left\| \|X_2^* M \widetilde{X}_1\|_F^2 - \|X_2^* M X_1\|_F^2 \right|$ $\diamond \sin \Theta(\mathcal{X}_1, \widetilde{\mathcal{X}}_1) \text{ bound,} \\ \mathcal{X}_1 = \operatorname{span}(M^{1/2} X_1), \\ \widetilde{\mathcal{X}}_1 = \operatorname{span}(M^{1/2} \widetilde{X}_1).$

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

Summary and outlook

1. within parameter dependent QEP:

The extension and application of modal approximation on

efficient approximation of eigenvalues $\lambda_i(v)$ for QEP $(\mu^2 M + \mu C(v) + K)x(v) = 0.$ \Leftrightarrow for all i = 1, ..., n and modest $0 < v \le V_M.$ \Leftrightarrow for the part of spectrum, i.e. $r_0 \le i \le r_0 + k$ and mode $0 < v \le V_M.$

2. within perturbation theory:

 $\diamond \text{ bound for the norm difference } \left| \|X_2^* M \widetilde{X}_1\|_F^2 - \|X_2^* M X_1\|_F^2 \right|$ $\diamond \sin \Theta(\mathcal{X}_1, \widetilde{\mathcal{X}}_1) \text{ bound,} \\ \mathcal{X}_1 = \operatorname{span}(M^{1/2} X_1), \\ \widetilde{\mathcal{X}}_1 = \operatorname{span}(M^{1/2} \widetilde{X}_1).$

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

Summary and outlook

1. within parameter dependent QEP:

The extension and application of modal approximation on

efficient approximation of eigenvalues $\lambda_i(v)$ for QEP $(\mu^2 M + \mu C(v) + K)x(v) = 0.$ \diamond for all $i = 1, \dots, n$ and modest $0 < v \le V_M.$ \diamond for the part of spectrum, i.e. $r_0 \le i \le r_0 + k$ and modest $0 < v \le V_M.$

2. within perturbation theory:

 $\diamond \text{ bound for the norm difference } \left| \|X_2^* M \widetilde{X}_1\|_F^2 - \|X_2^* M X_1\|_F^2 \right|$ $\diamond \sin \Theta(\mathcal{X}_1, \widetilde{\mathcal{X}}_1) \text{ bound, } \mathcal{X}_1 = \operatorname{span}(M^{1/2} X_1), \widetilde{\mathcal{X}}_1 = \operatorname{span}(M^{1/2} \widetilde{X}_1).$

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

Summary and outlook

1. within parameter dependent QEP:

The extension and application of modal approximation on

efficient approximation of eigenvalues $\lambda_i(v)$ for QEP $(\mu^2 M + \mu C(v) + K)x(v) = 0.$ \diamond for all $i = 1, \dots, n$ and modest $0 < v \le V_M.$ \diamond for the part of spectrum, i.e. $r_0 \le i \le r_0 + k$ and modest $0 < v \le V_M.$

2. within perturbation theory:

$$\begin{split} & \diamondsuit \text{ bound for the norm difference } \left| \|X_2^* M \widetilde{X}_1\|_F^2 - \|X_2^* M X_1\|_F^2 \right| \\ & \diamondsuit \Theta(\mathcal{X}_1, \widetilde{\mathcal{X}}_1) \text{ bound}, \mathcal{X}_1 = \operatorname{span}(M^{1/2} X_1), \widetilde{\mathcal{X}}_1 = \operatorname{span}(M^{1/2} \widetilde{X}_1). \end{split}$$

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

Summary and outlook

1. within parameter dependent QEP:

The extension and application of modal approximation on

efficient approximation of eigenvalues $\lambda_i(v)$ for QEP $(\mu^2 M + \mu C(v) + K)x(v) = 0.$ \diamond for all $i = 1, \dots, n$ and modest $0 < v \le V_M.$ \diamond for the part of spectrum, i.e. $r_0 \le i \le r_0 + k$ and modest $0 < v \le V_M.$

2. within perturbation theory:

$$\begin{split} & \diamondsuit \text{ bound for the norm difference } \left| \|X_2^* M \widetilde{X}_1\|_F^2 - \|X_2^* M X_1\|_F^2 \right| \\ & \diamondsuit \Theta(\mathcal{X}_1, \widetilde{\mathcal{X}}_1) \text{ bound}, \mathcal{X}_1 = \operatorname{span}(M^{1/2} X_1), \widetilde{\mathcal{X}}_1 = \operatorname{span}(M^{1/2} \widetilde{X}_1). \end{split}$$

Bound for the norm difference Simultaneously diagonalizable case Numerical experiments

Thank you for your attention!