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Problem formulation
Reduced system
Numerical experiments

Introduction
Optimization problem

We consider vibrational system

Mq̈(t) +

C=damping part︷ ︸︸ ︷
(Cint +B2GB

T
2 ) q̇(t) +Kq(t) = E2w(t),

z(t) = H1q(t).

• M,K > 0 mass and stiffness,

• E2 primary excitation matrix,

• Cint internal damping e.g. Cint = αcCcrit, where
Ccrit = 2M1/2

√
M−1/2KM−1/2M1/2,

• G = diag(g1, g2, . . . , gp), gi ≥ 0 represents coefficients of
damper,

• q state vector and z is output vector determined by H1,

• vector w corresponds to primary excitation input.
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Numerical experiments

Introduction
Optimization problem

Example: n-mass oscillator or oscillator ladder

w

g g

M = diag(m1,m2, . . . ,mn), C = B2GB
T
2 + αcCcrit,

B2GB
T
2 = g1(ek − ek+1)(ek − ek+1)

T + g2(ej − ej+1)(ej − ej+1)
T .

K =


k1 + k2 −k2
−k2 k2 + k3 −k3

. . .
. . .

. . .
−kn−1 kn−1 + kn −kn

−kn kn + kn+1

 .
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Introduction
Optimization problem

Linearization
• Using Φ which simultaneously diagonalizes M and K

ΦTKΦ = Ω2 = diag(ω2
1, . . . , ω

2
n) and ΦTMΦ = I,

0 < ω1 ≤ ω2 ≤ . . . ≤ ωn.
• with x̂1 = ΩΦ−1q(t) and x̂2 = Φ−1q̇(t) system can be written as :

˙̂x(t) = Âx̂(t) +

[
0

ΦTE2

]
w(t),

z(t) =
[
H1ΦΩ−1 0

]
x(t), where

x̂ =

[
x̂1
x̂2

]
, Â =

[
0 Ω
−Ω −αΩ− ΦTB2GB

T
2 Φ

]
.
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Problem :
Determine "optimal" damping matrix C which will minimize the effect of the
input w on the output z.

For criterion one can use e.g.:
• H2 norm of a system

‖H‖H2
=

(
1

2π

∫ +∞

−∞
tr (H(jω)∗H(jω)) dω

) 1
2

transfer function H(s) = H1(s
2M + sC +K)−1E2, s ∈ C.

• H∞ norm of a system

‖H‖H∞
= sup

ω≥0
‖H(jω)‖.
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Problem formulation
Reduced system
Numerical experiments

Introduction
Optimization problem

Optimization problem forH2 norm

Impulse response energy leads to

ÂT X̂ + X̂Â = −ĤT Ĥ,

Â =

[
0 Ω
−Ω −αΩ− ΦTB2GB

T
2 Φ

]
, Ĥ =

[
H1ΦΩ−1 0

]
,

With X̂ =

[
X11 X12

X21 X22

]
, it holds

J2 = tr (ET2 ΦX22Φ
TE2) → min .

Model order reduction: provides efficient approximation of energy J2
needed for optimization of G.
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ÂT X̂ + X̂Â = −ĤT Ĥ,

Â =

[
0 Ω
−Ω −αΩ− ΦTB2GB

T
2 Φ

]
, Ĥ =
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Problem formulation
Reduced system
Numerical experiments

Model order reduction
Interpolatory methods
Damping optimization

Model order reduction

With Wr ∈ Rn×r, q(t) = Wrqr(t) and Vr ∈ Rn×r we obtain reduced
system

Mr q̈r(t) + Cr q̇r(t) +Krqr(t) = Erw(t) where

Mr = W ∗rMVr, Cr = W ∗r CVr,

Kr = W ∗rKVr, Er = W ∗r E2, Hr = H1Vr

Transfer function of reduced system is

Hr(s) = Hr(s
2Mr + sCr +Kr)

−1Er, s ∈ C.

We choose Wr and Vr to enforce (tangential) interpolation.
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Problem formulation
Reduced system
Numerical experiments

Model order reduction
Interpolatory methods
Damping optimization

Model reduction by Interpolation

For selected points σ1, σ2, . . . , σr ∈ C and directions b1, . . . , br and
c1, . . . , cr find Hr(s) such that

cTi H(σi) = cTi Hr(σi)

H(σi)bi = Hr(σi)bi

cTi H
′(σi)bi = cTi H

′
r(σi)bi.

Moreover: we would like to have an approximation s.t. ‖·‖H2
is optimally

approximated, i.e. find local minimizer for ‖H −Hr‖H2 .

This can be done in general framework efficiently1 using structure
preserving Model Reduction.
Additionally to preserve structure in second order system: Vr = Wr.

1C.A. Beattie and S. Gugercin, Interpolatory Projection Methods for
Structure-preserving Model Reduction, Systems and Control Letters, 2009.
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Problem formulation
Reduced system
Numerical experiments

Model order reduction
Interpolatory methods
Damping optimization

Alg. 1: Iterative rational Krylov algorithm (IRKA)
Require: System matrices defining, and given gains g1, g2, . . . , gp,

initial shift selection σ1 . . . , σr; initial tangent directions r1, . . . , rr.
1: Vr = [(σ21M + σ1C +K)−1Br1, . . . , (σ

2
rM + σrC +K)−1Brr];

2: for j = 1, . . . ,maxit do
3: Form reduced system determined by: Mr = V ∗r MVr,

Cr = V ∗r CVr, Kr = V ∗r KVr, Er = V ∗r E2, Hr = H1Vr
4: Consider quadratic eigenvalue problem

(Mrλ
2
i + Crλi +Kr)xi = 0, xi 6= 0, i = 1, . . . , 2r and reduce

system to r states in order to have r eigenvalues λ̃1, . . . , λ̃r closed
under conjugation

5: σi = −λ̃i and update ri, i = 1, . . . , r
6: Vr = [(σ21M+σ1C+K)−1Br1, . . . , (σ

2
rM+σrC+K)−1Brr];

7: if converged then

8: return V = Vr
9: end if

10: end for
Zoran Tomljanović Interpolation-based parametric model reduction for efficient damping optimization 9/22



Problem formulation
Reduced system
Numerical experiments

Model order reduction
Interpolatory methods
Damping optimization

Usage of modal coordinates

For given shift σ and direction ri in solving

(σ2M + σ1C +K)−1Bri

we apply reduction directly to system in modal coordinates.
Here we use Sherman-Morrison-Woodbury formula:

(σ2I + σαΩ + σΦTB2GB
T
2 Φ + Ω2)−1ΦTBri = T−1ΦTBri

−sT−1Bg(Ip + sBT
g T
−1Bg)

−1BT
g T
−1ΦTBri

where

T = (σ2I + σαΩ + Ω2),

Bg = ΦTB2 diag(
√
g1, . . . ,

√
gp),

(Ip + sBT
g T
−1Bg) has dimension p (p - number of dampers (p� n)).
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Problem formulation
Reduced system
Numerical experiments

Model order reduction
Interpolatory methods
Damping optimization

Internal reduction

a) internal reduction based on balanced truncation;
used balanced truncation method applied to the linearized model.

b) internal reduction based on IRKA algorithm;
apply additional reduction using IRKA approach to linearized model.

c) internal reduction based on dominant poles;
Since the transfer function

F (s) =

2n∑
i=1

Ri
s− λi

with Ri = (H1xi)(y
∗
iE2)λi,

where λi ∈ C, xi, yi are, respectively, eigenvalues, right and left
eigenvectors of the QEP.
We maintain the r poles with the largest values of ‖Ri‖

|Re (λi)|
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Reduced system
Numerical experiments

Model order reduction
Interpolatory methods
Damping optimization

We propose the following sampling strategies

• fixed sampling parameters (depending on parameter feasible area);
• adaptive sampling during optimization.

g

‖H‖H2

‖Hr‖H2
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Zoran Tomljanović Interpolation-based parametric model reduction for efficient damping optimization 12/22



Problem formulation
Reduced system
Numerical experiments

Model order reduction
Interpolatory methods
Damping optimization

Optimization approach using fixed sampling parameters

Algorithm 2:

Require: System matrices; initial value for shift selection σ1 . . . , σr and
initial directions r1, . . . , rr;
number of wanted poles kwanted for each setting of parameters.;
set of sampling parameters g1, . . . , gm.

Ensure: Approximate optimal gains.
1: for j = 1, . . . ,m do
2: With IRKA Algorithm using gain gi calculate V i

3: end for
4: X = orth([V 1, . . . , V m]).
5: Form a reduced system using X .
6: Find an optimal gains by using an appropriate optimization procedure

on obtained reduced system.

Zoran Tomljanović Interpolation-based parametric model reduction for efficient damping optimization 13/22



Problem formulation
Reduced system
Numerical experiments

Model order reduction
Interpolatory methods
Damping optimization

Optimization approach using adaptive sampling

Algorithm 3:

Require: System matrices; initial value for shift selection σ1 . . . , σr and
initial directions r1, . . . , rr;
number of wanted poles kwanted for each setting of parameters.;
the first sampling parameters g0.

Ensure: Approximate optimal gains.
1: j = 0;
2: repeat
3: With IRKA Algorithm using gain gj calculate V j

4: Form reduced system using X = orth([V 0, V 1, . . . , V j ]) .
5: j = j + 1
6: Find an approximation of optimal gains by using obtained reduced

system and denote it by gj .
7: until |gj − gj−1| < tolg
8: return gj
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Problem formulation
Reduced system
Numerical experiments

Model order reduction
Interpolatory methods
Damping optimization

Parametric dominant pole algorithm

Reduced system is obtained with q(t) = Xqk(t) where X ∈ Cn×k span
the eigenspaces associated with the k dominant poles, efficiently
calculated.

For initial parameters g(1) = 0, g(2), . . . , g(m) we merge together
corresponding right eigenspaces X(j). for initial parameters the
original and reduced model have similar behavior near dominant poles.

Determination of sampling parameters g(2), . . . , g(m): adaptively,
depending on residual error bound.

2P. Benner, P. Kürschner, Z. Tomljanović, N. Truhar, Semi-active damping optimization of
vibrational systems using the parametric dominant pole algorithm, Journal of Applied
Mathematics and Mechanics, 2016
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Problem formulation
Reduced system
Numerical experiments

Example
Comparison with dominant pole algorithm
Comparison of approaches based on IRKA

We will consider the n-mass oscillator with 1900 masses where

M = diag (m1,m2, . . . ,mn),

K =


2k1 + 2k2 −k2 −k3
−k2 2k2 + 2k3 −k3 −k4
−k3 −k3 2k3 + 2k4 −k4 −k5

. . .
. . .

. . .
. . .

. . .

 .

With configuration:

n = 1900; αc = 0.005

ki = 500, ∀i; mi =

{
144− 3

20 i, i = 1, . . . , 475,
i
10 + 25, i = 476, . . . , 1900.
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Primary excitation matrix is applied to 10 consecutive masses, i.e.

E2(471 : 481, 1 : 10) = diag(10, 20, 30, 40, 50, 50, 40, 30, 20, 10),

We are interested in the 18 states equally distributed

H1(1 : 18, 100 : 100 : 1800) = I18×18

The geometry of external damping is determined by four dampers with

B2 = [ei ei+1 ek ek+1] ,

for 44 different damping configurations (i, k), where

G = diag (g1, g1, g2, g2).
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Comparison:
• IRKA with fixed sampling ↔ parametric dominant pole algorithm,
• IRKA with fixed sampling ↔ IRKA with adaptive sampling.

IRKA alg
maxit = 20
r = 40

Alg. 2 =
fixed sampling

a)
balanced
truncation

b)
IRKA

maxit =
100

c)
dominant

pole

Alg. 3 =
adaptive
sampling;
tolg = 0.02

a)
balanced
truncation

b)
IRKA

maxit =
100

c)
dominant

pole
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Gains for fixed sampling

g(0) = (0, 0) ⇒ g(1)

g(2) = (1000, 1000)

g(3) = (100, 1000)

g(4) = (1000, 100)

 configuration number 
0 5 10 15 20 25 30 35 40 45

op
tim

al
 g

ai
n

0

1000

2000

3000

4000

5000
first gain
second gain
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configuration number 
0 5 10 15 20 25 30 35 40 45

0

0.005

0.01

0.015
comparison of relative errors in optimal gain

Dominant pole approach
IRKA with strategy a)
IRKA with strategy b)
IRKA with strategy c)

0 5 10 15 20 25 30 35 40 45
0

0.002

0.004

0.006

0.008

0.01
comparison of relative errors in H2 norm
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Comparison of relative errors in optimal gain

0 5 10 15 20 25 30 35 40 45

re
la

tiv
e 

er
ro

r

10-5

10-4

10-3

10-2

Algorithm 2 with strategy a)
Algorithm 3 with strategy a)

0 5 10 15 20 25 30 35 40 45

re
la

tiv
e 

er
ro

r

10-5

10-4

10-3

10-2

Algorithm 2 with strategy b)
Algorithm 3 with strategy b)

0 5 10 15 20 25 30 35 40 45

re
la

tiv
e 

er
ro

r

10-5

10-4

10-3

10-2

Algorithm 2 with strategy c)
Algorithm 3 with strategy c)
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 configuration number 
0 5 10 15 20 25 30 35 40 45

tim
e 

ra
tio

0

100

200

300

400

500

600

700

800
Algorithm 2 with strategy a)
Algorithm 3 with strategy a)
Algorithm 2 with strategy b)
Algorithm 3 with strategy b)
Algorithm 2 with strategy c)
Algorithm 3 with strategy c)
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Thank you for your attention!
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