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Problem formulation
Reduced system
Numerical experiments

Introduction

We consider vibrational system

C=damping part

Mj(t) + (Cint + B2GB3 ) 4(t) + Kq(t) = Eyw(t),
2(t) = Hiq(t).
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Introduction

We consider vibrational system

C=damping part

Mj(t) + (Cint + B2GB3 ) 4(t) + Kq(t) = Eyw(t),
2(t) = Hiq(t).

M, K > 0 mass and stiffness,

e [, primary excitation matrix,

o () internal damping e.g. Cint = aClrit, Wwhere
Corit = 2M Y2V M-12KM-1/2)M1/2,
e G =diag(g1,92,---,9p). 9i > 0 represents coefficients of

damper,
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Introduction

We consider vibrational system

C=damping part

Mj(t) + (Cint + B2GB3 ) 4(t) + Kq(t) = Eyw(t),
2(t) = Hiq(t).

e M, K > 0 mass and stiffness,

e [, primary excitation matrix,

o () internal damping e.g. Cint = aClrit, Wwhere
Corit = 2MY2V/M-12KM~1/20M1/2,

e G = diag(g1,92,---,9p), 9i > 0 represents coefficients of
damper,

e ( state vector and z is output vector determined by H,

e vector w corresponds to primary excitation input.
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Example: n-mass oscillator or oscillator ladder
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Introduction

Example: n-mass oscillator or oscillator ladder

&
M = diag(mi,ma,...,my), C = BQGBg + aeClorit,

ByGB] = gi(ex — ext1)(er — exs1)” + gale; — ejpr)(ej — ejp)”

ki +ko  —ko
—ky kot ks —ks

*kn_l kn_l + kn *kn
*kn kn + kn+l
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Introduction

Linearization
e Using ® which simultaneously diagonalizes M and K

PTK® = 0? = diag(w?,...,w?) and ®TM® =1,

n

O<w <ws < ... < wp.
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Problem formulation
Introduction

Reduced system
Numerical experiments

Linearization
e Using ® which simultaneously diagonalizes M and K

PTK® = 0? = diag(w?,...,w?) and ®TM® =1,

O<w <ws < ... < wy.
e with &1 = Q@ 1¢(t) and 22 = ®~1¢(t) system can be written as :
) = Ab(0)+ | g | @)
2(t) = Az oTE, | W)
2(t)=[ H1®Q™t 0 |x(t), where

(&) 40 Q
e AT - —a0 - 3TB,GBTS |
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Problem formulation
Reduced system

Numerical experiments Optimization problem

Problem :

Determine "optimal" damping matrix C' which will minimize the effect of the
input w on the output 2.
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Problem formulation
Reduced system

Numerical experiments Optimization problem

Problem :

Determine "optimal" damping matrix C' which will minimize the effect of the
input w on the output z.

For criterion one can use e.g.:
e 5 norm of a system

il = (5 [ (H(M*H(jw))dwf

—0o0

transfer function H (s) = H;(s?M + sC + K) " 'Ey, se€C.
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Problem formulation
Reduced system

Numerical experiments Optimization problem

Problem :

Determine "optimal" damping matrix C' which will minimize the effect of the
input w on the output z.

For criterion one can use e.g.:
e H5 norm of a system

il = (5 [ (H(jw)*H(M)dw)é

—0o0

transfer function H (s) = H;(s?M + sC + K) " 'Ey, se€C.
e . norm of a system

[ H |3, = sup |[H(jw)].
w>0
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Problem formulation
Reduced system

Numerical experiments Optimization problem

Optimization problem for 7{; norm

Impulse response energy leads to

ATX + XA=-H"H,

N . O Q l o -1
A= [ ~Q —aQ - T B,GBI® } , H=[ oo™ 0],
I X11 X12] .
With X = , it holds
[ Xo1 X2

Jo = tr (EY®X09®TEy)  — min.
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Problem formulation
Reduced system

Numerical experiments Optimization problem

Optimization problem for 7{; norm

Impulse response energy leads to

ATX + XA=-H"H,

N . O Q l o -1
A= [ ~Q —aQ - T B,GBI® } , H=[ oo™ 0],
I X11 X12] .
With X = , it holds
[ Xo1 X2

Jo = tr (EY®X09®TEy)  — min.

Model order reduction: provides efficient approximation of energy .J>
needed for optimization of G.
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Reduced system

Problem formulation Model order reduction
Numerical experiments

Model order reduction

With W, € R"*", q(t) = W,.q-(t) and V,. € R™*" we obtain reduced
system

MG, (t) + Crgr(t) + K,qr(t) = E;w(t) where

M, = W*MV,,C, = W*CV,,
K, =W!KV,,E, =W}E,, H, = H{V,
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Reduced system

Problem formulation Model order reduction
Numerical experiments

Model order reduction

With W, € R"*", q(t) = W,.q-(t) and V,. € R™*" we obtain reduced
system

MG, (t) + Crgr(t) + K,qr(t) = E;w(t) where
M, = W;MV,,C, = W*CV,,
K, =W!KV,,E, =W}E,, H, = H{V,

Transfer function of reduced system is
H,(s) = H.(s*M, + sC, + K,)'E,, secC.

We choose W, and V. to enforce (tangential) interpolation.
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Problem formulation
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Model reduction by Interpolation

For selected points 01, 09, ..., 0, € C and directions by, ..., b, and
Cly ..., ¢ find Hy(s) such that
¢l H(o;) = ¢] Hy(03)
H(O’l)bl = Hr(o'z)bz
C,LTH,(O'l)bl = CZTH;(O'l)bl
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Problem formulation
Reduced system Interpolatory methods
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Model reduction by Interpolation

For selected points 01, 09, ..., 0, € C and directions by, ..., b, and
Cly ..., ¢ find Hy(s) such that
¢l H(o;) = ¢] Hy(03)
H(O’l)bz = Hr(o'z)bz
C,LTH,(O'Z)bz = CZTH;(O'l)bZ

Moreover: we would like to have an approximation s.t. ||-[|;,, is optimally
approximated, i.e. find local minimizer for ||H — H, || %,
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Problem formulation
Reduced system Interpolatory methods
Numerical experiments

Model reduction by Interpolation

For selected points 01, 09, ..., 0, € C and directions by, ..., b, and
Cly ..., ¢ find Hy(s) such that
¢l H(oy) = ¢ Hy(03)
H(O’l)bz = Hr(o'z)bz
C,LTH,(O'Z)bz = CITH;(O'l)bZ
Moreover: we would like to have an approximation s.t. ||-[|;,, is optimally
approximated, i.e. find local minimizer for ||H — H, || %,

This can be done in general framework efficien'[ly1 using structure
preserving Model Reduction.

'C.A. Beattie and S. Gugercin, Interpolatory Projection Methods for
Structure-preserving Model Reduction, Systems and Control Letters, 2009.
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Problem formulation
Reduced system Interpolatory methods
Numerical experiments

Model reduction by Interpolation

For selected points 01, 09, ..., 0, € C and directions by, ..., b, and
Cly ..., ¢ find Hy(s) such that

¢ H(oi) = ¢ Hy (o)
H(O’l)bz = Hr(o'z)bz
C,LTH,(O'Z)bz = CITH;(O'l)bZ
Moreover: we would like to have an approximation s.t. ||-[|;,, is optimally
approximated, i.e. find local minimizer for ||H — H, || %,

This can be done in general framework efficien'[ly1 using structure
preserving Model Reduction.
Additionally to preserve structure in second order system: V. = W...

'C.A. Beattie and S. Gugercin, Interpolatory Projection Methods for
Structure-preserving Model Reduction, Systems and Control Letters, 2009.
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Alg. 1: lterative rational Krylov algorithm (IRKA)
Require: System matrices defining, and given gains g1, g2, - - -, gp,
initial shift selection o7 . . ., o,; initial tangent directions 71, . .., 7.
1: V, =[(0iM +01C+ K) 'Bry,...,(02M + 0,C + K) ™' Br,];
2: forj =1,..., max; do
3:  Form reduced system determined by: M, = VMV,
Cp = ViCVy, K, = ViKV,, E, = Vi Eo, H, = HV,
4.  Consider quadratic eigenvalue problem
(Mr)\l2 +CNi + Kp)z; =0,2; #0,i=1,...,2r and reduce
system to r states in order to have r eigenvalues 5\1, e S\T closed
under co~njugation

5. o0;=—MNandupdater;,i=1,...,r

6: Vp=[(0M~+01C+K) 'Bry,...,(0]M+0,C+K) 'Br,];
7. if converged then

8: returnV =V,

9: endif

10: end for
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Problem formulation
Reduced system Interpolatory methods
Numerical experiments

Usage of modal coordinates

For given shift o and direction 7; in solving
(02M 4 01:C 4+ K) ' Br;

we apply reduction directly to system in modal coordinates.
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Problem formulation
Reduced system Interpolatory methods
Numerical experiments

Usage of modal coordinates

For given shift o and direction 7; in solving
(02M 4 01:C 4+ K) ' Br;

we apply reduction directly to system in modal coordinates.
Here we use Sherman-Morrison-Woodbury formula:

(021 4+ 0aQ) + 0®T B,GBY® + 0?) 710" Br; = 77107 Br,
—sT™'By(I, + sB, T~'By) "' Bl T~'®" Br,
where
T = (021 + 0af) + Q?),
By = @' By diag(v/g1, - - -, \/Tp):

(I, + sB] T~'By) has dimension p (p - number of dampers (p < n)).
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Problem formulation
Reduced system Interpolatory methods
Numerical experiments

Internal reduction

a) internal reduction based on balanced truncation;
used balanced truncation method applied to the linearized model.
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Problem formulation
Reduced system Interpolatory methods
Numerical experiments

Internal reduction

b) internal reduction based on IRKA algorithm;
apply additional reduction using IRKA approach to linearized model.
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Problem formulation
Reduced system Interpolatory methods
Numerical experiments

Internal reduction

c) internal reduction based on dominant poles;
Since the transfer function

2n
R; . *
Fls)=Y o with Ri = (Huzi)(y; B2)\i,

i=1 v

where \; € C, x;, y; are, respectively, eigenvalues, right and left
eigenvectors of the QEP.
We maintain the 7 poles with the largest values of %
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Problem formulation
Reduced system Interpolatory methods
Numerical experiments

We propose the following sampling strategies

e fixed sampling parameters (depending on parameter feasible area);

[Hr [l
[H {24,
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Problem formulation
Reduced system Interpolatory methods
Numerical experiments

We propose the following sampling strategies

e adaptive sampling during optimization.

[ 24
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Problem formulation
Reduced system Interpolatory methods
Numerical experiments

We propose the following sampling strategies

e adaptive sampling during optimization.

[H 24,

HHH H'H2
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Problem formulation
Reduced system Interpolatory methods
Numerical experiments

We propose the following sampling strategies

e adaptive sampling during optimization.
([ Hro |74,

[ 34

[y [l
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Problem formulation
Reduced system Interpolatory methods
Numerical experiments

We propose the following sampling strategies

e adaptive sampling during optimization.
([ Hro |74,

[ 34

[y [l
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Problem formulation
Reduced system
Numerical experiments Damping optimization

ptimization approach using fixed sampling parameters

Algorithm 2:

Require: System matrices; initial value for shift selection o7 .. ., o, and

initial directions 71, ..., 7y;
number of wanted poles k,,qnteq fOr each setting of parameters.;
set of sampling parameters g, ..., g™.

Ensure: Approximate optimal gains.

1

2
3
4:
5
6

cforj=1,...,mdo

With IRKA Algorithm using gain ¢° calculate V*
: end for

X =orth([V1,...,V™]).

: Form a reduced system using X .

: Find an optimal gains by using an appropriate optimization procedure

on obtained reduced system.
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Problem formulation
Reduced system
Numerical experiments Damping optimization

Optimization approach using adaptive sampling

Algorithm 3:

Require: System matrices; initial value for shift selection o1 .. ., o, and
initial directions 71, ..., 7y;
number of wanted poles k,qnteq fOr each setting of parameters.;
the first sampling parameters ¢°.

Ensure: Approximate optimal gains.

1: j = O;

2: repeat

3. With IRKA Algorithm using gain ¢’ calculate V7

4:  Form reduced system using X = orth([V?, V1 ... VJ]).

5 j=3+1

6:  Find an approximation of optimal gains by using obtained reduced

system and denote it by gj .
:until [¢7 — ¢ 7Y < tol,
8: return g’

~
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Problem formulation
Reduced system
Numerical experiments Damping optimization

Parametric dominant pole algorithm

Reduced system is obtained with ¢(¢) = X ¢ (t) where X € C™"*¥ span
the eigenspaces associated with the k£ dominant poles, efficiently
calculated.

2p, Benner, P. Kiirschner, Z. Tomljanovi¢, N. Truhar, Semi-active damping optimization of
vibrational systems using the parametric dominant pole algorithm, Journal of Applied
Mathematics and Mechanics, 2016
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Problem formulation
Reduced system
Numerical experiments Damping optimization

Parametric dominant pole algorithm

Reduced system is obtained with ¢(¢) = X ¢ (t) where X € C™"*¥ span
the eigenspaces associated with the k£ dominant poles, efficiently
calculated.

For initial parameters g(l) =0, 9(2)7 e ,g(m) we merge together

corresponding right eigenspaces X @)~ for initial parameters the
original and reduced model have similar behavior near dominant poles.

2p, Benner, P. Kiirschner, Z. Tomljanovi¢, N. Truhar, Semi-active damping optimization of
vibrational systems using the parametric dominant pole algorithm, Journal of Applied
Mathematics and Mechanics, 2016
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Problem formulation
Reduced system
Numerical experiments Damping optimization

Parametric dominant pole algorithm

Reduced system is obtained with ¢(¢) = X ¢ (t) where X € C™"*¥ span
the eigenspaces associated with the k£ dominant poles, efficiently
calculated.

For initial parameters g(l) =0, 9(2)7 e ,g(m) we merge together
corresponding right eigenspaces X @)~ for initial parameters the
original and reduced model have similar behavior near dominant poles.

Determination of sampling parameters g(2), e ,g(m): adaptively,
depending on residual error bound.

2p, Benner, P. Kiirschner, Z. Tomljanovi¢, N. Truhar, Semi-active damping optimization of
vibrational systems using the parametric dominant pole algorithm, Journal of Applied
Mathematics and Mechanics, 2016

Zoran Tomljanovi¢ Interpolation-based parametric model reduction for efficient damping optimization



Problem formulation Example
Reduced system

Numerical experiments

We will consider the n-mass oscillator with 1900 masses where

M = diag (mq, ma, ..., my),

2k1 + 2ko —ko *k3
“ky 2o +2ks  —ks  —ky

K= —k3 —k3 2ks +2ky —ks —ks

With configuration:
n =1900; a. = 0.005

3 . .
— 3, i=1,...,4
k; = 500, Vi; mi:{ 144 — i, i=1,...,475,

425, i=476,...,1900.
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Problem formulation Example
Reduced system

Numerical experiments

Primary excitation matrix is applied to 10 consecutive masses, i.e.
E5(471 : 481,1 : 10) = diag(10, 20, 30, 40, 50, 50, 40, 30, 20, 10),
We are interested in the 18 states equally distributed
Hy(1:18,100 : 100 : 1800) = I18x18
The geometry of external damping is determined by four dampers with
By = [e; eiy1 e exy1],
for 44 different damping configurations (i, k), where

G = diag (91, 91, 92, g2)-
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Numerical experiments

Comparison:
e |IRKA with fixed sampling <>
e |IRKA with fixed sampling <

<)
dominant
pole

b)
IRKA
maxi; =

100 Ag. 2 —

fixed sampling

a)
balanced
truncation

Example

parametric dominant pole algorithm,
IRKA with adaptive sampling.

a)
balanced
truncation

Alg. 3 =
adaptive
sampli
tol, = 0.02
c)
dominant
pole

IRKA alg

max;; = 20
r = 40
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Gains for fixed sampling

I Example

=( 0) = g
= (1000, 1000)
= (100, 1000)
= (1000, 100)
5000 ; ;
% first gai
N
8 3000 o % ]
*
E * « *q * *
8 20001 * x KL A
o * < <] * *
¥k K soe bl soe <
10001 < N
«Qﬁq% % B *WQ%W%’&% %
% 5 10 ‘ 55 0 s
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Problem formulation
Reduced system

Comparison with dominant pole algorithm
Numerical experiments

comparison of relative errorsin optimal gain

(T ¥l% R o QE® 1 T
0 10 15 20 25 30 35 40 45
configuration number 2 Dominant pole approach
O IRKA with strategy a)
. . . O IRKA with strategy b)
001 * comparison of relativeerrorsin H2norm | O IRKA with strategy ¢)
0.008 - *
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Comparison of relative errors in optimal gain

107 ‘
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Sle} O
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®pal O ? iSte} ]
10 *5 © o *
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*  Algorithm 3 with strategy a)
10% I I I I I
5 10 15 20 25 30 35 40 48
102 : : . : : : : : "
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Problem formulation
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Numerical experiments Comparison of approaches based on IRKA
800
I I I I To Algorithm 2 with strategy a)
% Algorithm 3 with strategy a)
700 - * O Algorithm 2 with strategy b) H
> Algorithm 3 with strategy b)
O Algorithm 2 with strategy c)
600 [- > Algorithm 3 with strategy c) [
*
500 - B
o *
2 10 ol *
] [ ¥ 4
£ *
ke *
300 *% ¥ B

configuration number
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